Polyvinyl Chloride-Based Bipolar Membrane with a Three-Dimensional Junction for Water Electrolysis: High Structural and Chemical Stability with Enhanced Water-Splitting Efficiency
본 연구에서는 상용 폴리염화비닐을 개질하여 두 종류의 PVC 기반 이온교환용 고분자를 성공적으로 제조하였다. 이후 개질된 두 이온교환 고분자를 활용한 전기방사 공정과 열 압착 공정을 거쳐 2차원 계면(2D-PVC-BPM)과 3차원 접합부 (3D-PVC-BPM)를 갖는 바이폴라막(BPM)을 제조하였다. 제조된 3D-PVC-BPM은 2D-PVC-BPM에 비해 우수한 물 분해 효율 및 안정성을 보였다. 구체적으로, 300 mA cm-2의 고전류 밀도에서 3D-PVC-BPM은 2D-PVC-BPM가 나타낸 전위보다 4.4 V 낮은 8.05 V의 막 전위를 나타냈다. 더욱이, PVC 주쇄가 가진 내화학성 덕분에 3D-PVC-BPM은 가혹한 조건에서도 높은 화 학적 안정성을 보였고, 이는 4 M H2SO4 및 4 M NaOH 용액에 28일간 침지한 후 관측된 질량 손실이 각각 2.8%와 2.1%에 그친 것을 통해 입증되었다. 끝으로, 3차원 접합부가 3D-PVC-BPM에 맞물림(interlocking) 효과와 넓은 계면면적을 제공해준 덕분에 3D-PVC-BPM의 인장 강도는 36 MPa를 초과했고 신장률 또한 약 50%에 이르는 등 우수한 기계적 물성을 나타냈다.
본 연구에서는 상용 폴리염화비닐을 개질하여 두 종류의 PVC 기반 이온교환용 고분자를 성공적으로 제조하였다. 이후 개질된 두 이온교환 고분자를 활용한 전기방사 공정과 열 압착 공정을 거쳐 2차원 계면(2D-PVC-BPM)과 3차원 접합부 (3D-PVC-BPM)를 갖는 바이폴라막(BPM)을 제조하였다. 제조된 3D-PVC-BPM은 2D-PVC-BPM에 비해 우수한 물 분해 효율 및 안정성을 보였다. 구체적으로, 300 mA cm-2의 고전류 밀도에서 3D-PVC-BPM은 2D-PVC-BPM가 나타낸 전위보다 4.4 V 낮은 8.05 V의 막 전위를 나타냈다. 더욱이, PVC 주쇄가 가진 내화학성 덕분에 3D-PVC-BPM은 가혹한 조건에서도 높은 화 학적 안정성을 보였고, 이는 4 M H2SO4 및 4 M NaOH 용액에 28일간 침지한 후 관측된 질량 손실이 각각 2.8%와 2.1%에 그친 것을 통해 입증되었다. 끝으로, 3차원 접합부가 3D-PVC-BPM에 맞물림(interlocking) 효과와 넓은 계면면적을 제공해준 덕분에 3D-PVC-BPM의 인장 강도는 36 MPa를 초과했고 신장률 또한 약 50%에 이르는 등 우수한 기계적 물성을 나타냈다.