논문 상세보기

자율주행차량의 안전 차로변경 궤적 생성 알고리즘 개발 - Field Theory 중심으로

Field Theory based Safer Lane-changing Trajectory Planning for Autonomous Vehicles

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/440533
구독 기관 인증 시 무료 이용이 가능합니다. 3,000원
한국도로학회 (Korean Society of Road Engineers)
초록

도로 위 차량의 차로변경은 주변 차량의 움직임에 민감하게 반응해야 하며, 적절한 속도와 타이밍으로 수행하지 못할 경우 교통 흐름을 방해하고 부정적인 영향을 초래할 수 있다. 자율주행차량(Autonomous Vehicle, AV)은 이러한 문제를 해결하기 위해 주변 상황을 정확히 판단하고 인지하여 차로변경을 수행한다. 이때, 안전 관리 전략의 일환으로 최적화된 차로변경 주행 궤적을 제공함으로써 안전하고 효율적인 차로변경을 실현하는 것이 중요하다. 본 연구는 이러한 배경에서 주변 차량과 EGO 차량의 예측 주행 궤적에 기반한 확률론적 개념인 risk field를 계산하고, 이를 활용하여 차량의 종방 향 및 횡방향 안전 궤적을 제시하였다. 이를 위해 고속도로 드론 데이터를 활용하여 차량 간 상호작용 상황을 분석하고, 차로변경 시나리오 데이터를 분류하였다. 연구에서는 주행 속도와 차량의 경위도 등 1.1초 동안의 연속된 주행 데이터를 입력으로 사용하였으며, 다층 인코더-디코더 장단기 메모리 네트워크(EDLN) 모델을 통해 미래 6초 후 차량의 위치를 예 측하였다. 이후 장 이론(field theory)을 기반으로 한 risk field 모형을 통해 도로 위 각 지점의 위험도를 정량화하였다. 또한, 차량의 거동 제약, 주행 편의성, 그리고 안전성 제약 조건을 반영하여 안전 궤적을 생성하였다. 마지막으로, 생성된 궤적이 교통류 안전성에 미치는 영향을 평가하기 위해 예측된 주행 궤적(predicted trajectory)과 실제 주행 궤적(ground truth)을 비교 분석하였다. 평가지표는 대리 안전 지표(surrogate safety measure, SSM) 중 TTC(Time to Collision)와 PET(Post Encroachment Time)를 활용하였다. 본 연구는 제안된 안전성 정량화 및 궤적 생성 방법이 기존 방법론과 비 교하여 우수한 성능을 보임을 입증하였으며, 향후 자율주행차량 혼재 교통류 및 완전 자율주행 교통류에서 높은 효율성 과 안전성을 확보하는 데 기여할 것으로 기대된다.

저자
  • 오동희(한양대학교 스마트시티공학과 박사과정) | Oh Donghee
  • 박준영(한양대학교 교통물류공학과, 스마트시티공학과 부교수) | Park Juneyoung
  • 주양준(University of Central Florida Dept. of Civil, Environmental & Construction Engineering Postdoctoral Researcher) | Joo Yangjun