In this paper, the design feasibility of the high-temperature rotation test jig for the operating state of gas turbine blades was confirmed through thermal structural analysis and modal analysis. The structural analysis model was composed of assembled blade, disc, cover, and shaft. Here, the disc was designed to be assembled with two types of blade. First, thermal analysis was performed by applying the blade surface temperature of 800°C. Next, structural analysis was performed at 3600 RPM, the normal operating condition, and 4320 RPM, the overspeed operation condition. Lastly, modal analysis was performed to examine the natural frequency and deformation of the jig. The FE analysis showed that the temperature decreased from the blade to disc dovetail. Additionally, both the blade and disc showed structural stability as the maximum stress was below the yield strength. Also, the first natural frequency was 636.35Hz and 639.43Hz at 3600RPM and 4320RPM, respectively, satisfying gas turbine design standards and guidelines. Ultimately, the designed test jig was confirmed to be capable of high temperature and rotation testing of various blades.