This study aims to present a methodology and the corresponding results of an economic analysis, incorporating both costs and benefits, to assess the feasibility of introducing a smart on-board truck scale.The cost estimation was conducted based on direct expenditures associated with the installation and operation of smart on-board truck scales. The benefit analysis was performed by evaluating the reduction in social costs resulting from the mitigation of overloading, including transportation infrastructure maintenance costs, traffic accident costs, and environmental costs. The economic analysis outlines the variables required for each phase of the smart on-board truck scale implementation, along with their reasonable value ranges. In consideration of the uncertainty regarding the effectiveness of the smart on-board truck scales, a quantitative assessment of the impact of individual variables on the economic indicators was carried out through scenario analysis, focusing on key variables. The influence of the vehicle service life, the service life of the smart on-board truck scale, and personnel expenses—each related to installation and operation—on the benefit-cost ratio (B/C) and net present value (NPV) was determined to be limited. In contrast, the overload crackdown rate exhibited the most significant impact on the B/C and NPV, as it directly increased the number of vehicles contributing to measurable benefits. Notably, an increase in the discount rate led to a decrease in the values of both economic indicators. This outcome is expected, as the discount rate reduces the present value of future costs and benefits by increasing the denominator in the calculation. The introduction of smart on-board truck scales enables the achievement of economic feasibility in preemptive overload enforcement. Therefore, progressively expanding the number of vehicles equipped with smart on-board truck scales is essential to maximize their effectiveness in the near term.