저 사양 환경을 위한 경량 CNN 기반 자동차 휠 형상 분류
The casting manufacturing process of aluminum automotive wheels often involves processing various wheel models during stages such as flow forming, machining, packaging, and delivery. Traditionally, separate equipment or production lines were required for each model, which led to higher facility investment costs and increased labor costs for classification. However, the implementation of machine learning-based model classification technology has made it possible to automatically and accurately distinguish between different wheel models, resulting in significant cost savings and enhanced production efficiency. Additionally, this approach helps prevent product mix-ups during the final inspection process and allows for the quick and precise identification of wheel models during packaging and delivery, reducing shipping errors and improving customer satisfaction. Despite these benefits, the high cost of machine learning equipment presents a challenge for small and medium-sized enterprises(SMEs) to adopt such technologies. Therefore, this paper analyzes the characteristics of existing machine learning architectures applicable to the automotive wheel manufacturing process and proposes a custom CNN(Convolutional Neural Network) that can be used efficiently and cost-effectively.