논문 상세보기

Drowning Detection and Localization Using Unmanned Mobile Systems for 24/7 Water Safety Surveillance KCI 등재

주․야간 상시 수상안전 감시를 위한 무인화 모빌리티 기반의 익수자 탐지 및 위치추정 모델

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/442919
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국산업경영시스템학회지 (Journal of Society of Korea Industrial and Systems Engineering)
한국산업경영시스템학회 (Society of Korea Industrial and Systems Engineering)
초록

In this paper, a water rescue mission system was developed for water safety management areas by utilizing unmanned mobility( drone systems) and AI-based visual recognition technology to enable automatic detection and localization of drowning persons, allowing timely response within the golden time. First, we detected suspected human subjects in daytime and nighttime videos, then estimated human skeleton-based poses to extract human features and patterns using LSTM models. After detecting the drowning person, we proposed an algorithm to obtain accurate GPS location information of the drowning person for rescue activities. In our experimental results, the accuracy of the Drown detection rate is 80.1% as F1-Score, and the average error of position estimation is about 0.29 meters.

목차
1. 서 론
2. 익수자 탐지모델 및 위치추정 기법
    2.1 드론 주/야간 영상에서의 익수자 탐지모델
    2.2 드론 영상 기반의 익수자 위치추정 기법
3. 실험 및 평가
    3.1 RGB 및 열화상 카메라 영상에서의 익수자탐지 모델의 검증
    3.2 영상기반 익수자 GPS 위치추정 검증
4. 결 론
Acknowledgement
References
저자
  • Heon Gyu Lee(AI & Drone Research Center, Gaion Co., Ltd.) | 이헌규 (㈜가이온 AI & 드론 연구소) Corresponding author
  • Dongsung Kim(School of IT Convergence, Soongsil University) | 김동성 (숭실대학교 인공지능, IT융합학과)
  • Hanhyeok Jho(School of IT Convergence, Soongsil University) | 조한혁 (숭실대학교 인공지능, IT융합학과)