This study evaluated the field applicability of a real-time odor monitoring system combined with ozone water spraying technology to effectively control odors generated in livestock manure recycling facilities. Research was conducted at a Natural Circulation Agriculture Center located in N City, where concentrations of ammonia (NH3), hydrogen sulfide (H2S), and volatile organic compounds (VOCs) were measured in real time. Based on real-time data, ozone water was sprayed to assess the odor reduction rate, and the impact on surrounding areas was predicted through odor dispersion modeling. The results showed that the ammonia concentration measured at the upper section of the liquid aeration tank before ozone water spraying was 8.02 ppm, exceeding the emission limit of 1 ppm. VOCs were also found to have significantly contributed to odor generation. However, after spraying ozone water at a rate of 7 L/min and maintaining a concentration of 2.5 mg/L, ammonia was reduced by approximately 50%, and VOCs were reduced by about 98%, demonstrating a strong odor-reducing effect. Odor dispersion modeling using the CALPUFF modeling system simulated the range of odor dispersion before and after ozone water spraying. The results indicated that after ozone water spraying, the ammonia concentration at the facility boundary met the emission limit, effectively suppressing odor dispersion. In particular, the ozone water spraying system linked with the real-time sensor enabled automated odor control based on real-time data, demonstrating its potential for resolving odor complaints and ensuring compliance with environmental regulations.