논문 상세보기

Simulating the Survival and Extinction of Generative AI Images in a Visual Ecosystem KCI 등재

시각적 생태계에서 생성형 AI 이미지의 생존과 소멸 시뮬레이션

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/443656
구독 기관 인증 시 무료 이용이 가능합니다. 5,100원
한국컴퓨터게임학회 논문지 (Journal of The Korean Society for Computer Game)
한국컴퓨터게임학회 (Korean Society for Computer Game)
초록

This study structurally analyzes the algorithmic filtering process by which generative AI images are either selected or discarded before reaching users, and models this process through a visual similarity–based simulation. Images generated by Stable Diffusion are placed on a two-dimensional grid, and a modified version of Conway’s Game of Life algorithm is applied to update the state of each cell. The survival of each cell is determined based on a hybrid visual similarity metric combining CLIP and LPIPS. To prevent the rigidity of the simulation and sustain emergent dynamics, random image injections are periodically introduced. The simulation results reveal that visually similar images repeatedly form clusters, and a visual order gradually converges toward a structurally stabilized state. This suggests that specific visual orders can emerge solely from algorithmic selection criteria, independent of human interpretation. By shifting focus from semantic or symbolic analysis to the experimental conditions for the existence and persistence of images, this study proposes a new analytical perspective for understanding digital image environments.

목차
ABSTRACT
1. Introduction
2. Theoretical Background
    2.1 Overproduction of Generative Images and the Digital Ecosystem
    2.2 Selection Mechanisms and Non-Human Filtering Structures
    2.3 Cellular Automata and Theories of Self-Organization
    2.4 Visual Similarity-Based Filtering Techniques
    2.5 The Concept of an Experimentable Visual Structure
3. Research Methodology
    3.1 Research Overview and a Cellular Automata-Based Approach
    3.2 Preparation of Generative AI Images
    3.3 Algorithmic Selection Mechanism and Visual Similarity
    3.4 Overall Simulation Structure
    3.5 System Implementation and Execution Environment
    3.6 Significance of the Methodological Approach
4. Simulation Results and Analysis
    4.1 Simulation Setup and Iterative Experiment Design
    4.2 Change in Survival Rate and Convergence of Visual Similarity
    4.3 Formation of Visual Clusters and Spatial Reconfiguration
    4.4 Repetition of Visual Order and Structural Convergence
    4.5 Visual Interpretation of Self-Organizing Structures
5. Conclusion
Acknowledgement
참고문헌

저자
  • Jung bin Lee(Department of Technology Art, GSAIM, Chung-Ang University, Art Center, Seoul 06974, Korea) | 이정빈
  • Jin Wan Park(Department of Technology Art, GSAIM, Chung-Ang University, Art Center, Seoul 06974, Korea) | 박진완 Corresponding author