Seismic design and risk assessment require input ground motions that accurately reflect both the seismic intensity associated with the target hazard level and the regional seismic characteristics of Korea. In this study, a scenario earthquake was defined through seismic hazard deaggregation. Due to the lack of recorded ground motions in Korea for this particular scenario, a finite fault was modeled. Seed ground motions related to the scenario earthquake were generated using the empirical Green’s function method, based on the 912 Gyeongju earthquake. During the spectral matching process, the convergence of the spectrum used for ground motion selection and the target Uniform Hazard Spectrum (UHS) was analyzed. This analysis led to the proposal of specific spectral conditions for selecting ground motions. The final set of input ground motions was then applied in time-history analyses of a nuclear power plant containment structure to assess its seismic response characteristics. The analysis results demonstrate that the proposed ground motion generation procedure applies to the development of ground motions in regions with moderate seismicity.