A technology was developed to measure the hydrogen uptake and diffusivity of polymer materials used in high-pressure hydrogen tanks and pipelines at hydrogen refueling stations. This technology involves charging hydrogen into polymer under a maximum pressure of 90 MPa, followed by depressurization. The polymer material is then placed in a cylinder partially submerged in water, and hydrogen is released from the material. The increase in volume of the released hydrogen causes a decrease in the water level in the cylinder. To track this in real-time, an image analysis algorithm based on the brightness of a crescent-shaped water level image is used to accurately measure the water level and change in hydrogen amount at the same time. This data is then used in a self-developed diffusivity analysis program to evaluate hydrogen uptake and diffusivity. Using this technology, the hydrogen uptake and diffusivity of sulfur-crosslinked nitrile butadiene rubber (NBR) composites containing carbon black and silica fillers were measured from 2 to 90 MPa. Additionally, the relationship between the physical stability of the NBR composites and their hydrogen uptake and diffusivity was investigated. To validate the effectiveness of the technology, an uncertainty analysis of the measurements was conducted, with all results showing an uncertainty within 8 %.