Gas Sensors Based on Volumetric Analysis and Manometric Analysis for Measuring Gas Uptake and Diffusivity in Gas Charged High-Density Polyethylene
Gas sensors play a crucial role in monitoring harmful gas concentrations and air quality in real-time, ensuring safety and protecting health in both environmental and industrial settings. Additionally, they are essential in various applications for energy efficiency and environmental protection. As the demand for hydrogen refueling stations and hydrogen fuel cell vehicles increases with the growth of the hydrogen economy, accurate gas concentration measurement technology is increasingly necessary given hydrogen's wide explosion range. To ensure safety and efficiency, gas sensors must accurately detect a wide range of gas concentrations in real-world environments. This study presents two types of gas sensors with high sensitivity, stability, low cost, fast response time, and compact design. These sensors, based on volume and pressure analysis principles, can measure gas filling amounts, solubility, diffusivity, and the leakage of hydrogen, helium, nitrogen, and argon gases in high-density polyethylene charged under high-pressure conditions. Performance evaluation shows that the two sensors have a stability of 0.2 %, a resolution of 0.12 wt・ppm, and can measure gas concentrations ranging from 0.1 wt・ppm to 1400 wt・ ppm within one second. Moreover, the sensitivity, resolution, and measurement range of the sensors are adjustable. Measurements obtained from these sensors of gas filling amounts and the diffusivity of four gases showed consistent results within uncertainty limits. This system, capable of real-time gas detection and characterization, is applicable to hydrogen infrastructure facilities and is expected to contribute to the establishment of a safe hydrogen society in the future.