Development of In-situ Permeation Measuring System Based on Manometric Analysis Method for Evaluating High-Pressure Hydrogen Permeation Properties of Polymer Materials up to 100 MPa
A high-pressure in-situ permeation measuring system was developed to evaluate the hydrogen permeation properties of polymer sealing materials in hydrogen environments up to 100 MPa. This system employs the manometric method, utilizing a compact and portable manometer to measure the permeated hydrogen over time, following high-pressure hydrogen injection. By utilizing a self-developed permeation-diffusion analysis program, this system enables precise evaluation of permeation properties, including permeability, diffusivity and solubility. To apply the developed system to high-pressure hydrogen permeation tests, the hydrogen permeation properties of ethylene propylene diene monomer (EPDM) materials containing silica fillers, specifically designed for gas seal in high-pressure hydrogen environments, were evaluated. The permeation measurements were conducted under pressure conditions ranging from 5 MPa to 90 MPa. The results showed that as pressure increased, hydrogen permeability and diffusivity decreased, while solubility remained constant regardless of pressure. Finally, the reliability of this system was confirmed through uncertainty analysis of the permeation measurements, with all results falling within an uncertainty of 11.2 %.