논문 상세보기

Nature’s blueprint for energy: biomass‑derived heteroatom‑doped graphene materials for advanced energy applications KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/444437
구독 기관 인증 시 무료 이용이 가능합니다. 9,500원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

The growing demand for clean energy and sustainable technologies has intensified the need for efficient energy storage systems (EES) that support renewable energy integration while minimizing environmental impact. Biomass, an abundant and renewable resource, presents a cost-effective and eco-friendly pathway for producing advanced carbon materials, particularly heteroatom-doped graphene derivatives. This transformation aligns with circular economy principles by converting waste streams into high-performance materials for EES applications. This review provides a comprehensive analysis of biomassderived heteroatom-doped graphene materials, focusing on their synthesis, properties, and applications in electrochemical energy storage systems. It addresses a critical gap in the literature by systematically examining the relationship between biomass sources, doping strategies, and their impact on graphene’s electrochemical performance. The study highlights the role of heteroatom doping such as nitrogen, sulfur, phosphorus, and boron in enhancing graphene’s structural and electronic properties. These modifications introduce active sites, improve conductivity, and facilitate ion storage and transport, resulting in superior energy density, cycling stability, and charge–discharge performance in devices such as sodium/lithium-ion batteries, lithium-sulfur batteries, supercapacitors, and fuel cells. Recent advancements in green synthesis methods, including pyrolysis, hydrothermal carbonization, and chemical activation, are highlighted, focusing on their scalability and resource efficiency. By addressing both environmental and technological benefits, this review bridges the gap between laboratory research and practical applications. It underscores the critical role of biomass-derived graphene in achieving sustainable energy solutions and advancing the circular economy, offering a roadmap for future innovations in this rapidly evolving field.

목차
Nature’s blueprint for energy: biomass-derived heteroatom-doped graphene materials for advanced energy applications
    Abstract
        Graphical abstract
    1 Introduction
    2 Biomass as a sustainable source for graphene production
        2.1 Types of biomass resources
            2.1.1 Agricultural residues
            2.1.2 Marine biomass
            2.1.3 Industrial and municipal wastes
        2.2 Composition of biomass and its suitability for carbon materials
        2.3 Environmental and economic benefits of biomass utilization
    3 Biomass-derived carbon materials
        3.1 Biochar
        3.2 Activated Carbon
        3.3 Hard carbon
        3.4 Quantum dots
        3.5 Carbon nanotubes
        3.6 Graphene-based structures
    4 Production methods for biomass-derived carbon materials
        4.1 Carbonization
            4.1.1 Pyrolysis
            4.1.2 Hydrothermal process
        4.2 Activation
            4.2.1 Chemical activation
            4.2.2 Physical activation
            4.2.3 Self-activation
    5 Heteroatom doping of graphene
        5.1 Structural and electronic changes induced by common dopants: nitrogen, sulfur, phosphorus, and boron
        5.2 Techniques for doping biomass-derived graphene
    6 Applications in electrochemical energy storage systems
        6.1 Supercapacitors: performance and challenges
        6.2 Lithium-ion and sodium-ion batteries
        6.3 Lithium-sulfur batteries: role of biomass-derived materials
        6.4 Oxygen reduction reaction (ORR) catalysts
    7 Future outlook and challenges
        7.1 Advancing synthesis techniques
        7.2 Interdisciplinary integration
        7.3 Environmental and economic considerations
        7.4 Application-specific challenges
        7.5 Challenges in scaling biomass-derived graphene technologies
        7.6 Toward a circular economy
    8 Conclusions
    9 Declaration of generative AI and AI-assisted technologies in the writing process
    References
저자
  • Ali İhsan Kömür(Department of Chemistry, Akdeniz University, Antalya 07070, Turkey)
  • Çağdaş Kızıl(Antalya Chamber of Commerce and Industry, Project Development and State Support Office, Antalya 07320, Turkey)
  • Ceren Karaman(Department of Electricity and Energy, Akdeniz University, Antalya 07070, Turkey) Corresponding author