The purpose of this study is to investigate the dynamic behavior of the internal cabinet of a nuclear power plant due to an earthquake and the characteristics of cabinet vibration reduction by TMD(tuned mass damper). For this purpose, the experimental device was constructed and numerical analysis was performed. The experimental device for the dynamic behavior of the cabinet consists of a cabinet, sliding base, mount, actuator, exciter, and measuring system, and the frequency response function of the cabinet was obtained. In addition, the time history of the cabinet was analyzed for acceleration and displacement through TMD design and cabinet 3D modeling. The natural frequency and response of the cabinet were lowered by approximately 26% due to the structural rigidity of the cabinet under the conditions of door opening and sliding base strong excitation. The acceleration and displacement characteristics of the cabinet varied depending on the TMD mass, and the cabinet vibration reduction effect was the best when the TMD mass was 60kg. The reduction in acceleration and displacement of the cabinet was approximately 12.1–16.2% and 10.1–19.1%, respectively.