This study investigates the vibration characteristics of an aluminum subframe for small and high-speed vessels through modal and resonance analysis using the finite element method (FEM). Due to the low stiffness and damping of aluminum, concerns arise over structural resonance and fatigue. A 3D model based on actual design drawings was analyzed to extract six natural frequencies and corresponding mode shapes. Significant deformation was observed in the first and second modes (90.65 Hz, 110.60 Hz), which may overlap with operational frequencies. The fifth mode (263.70 Hz) showed high amplitude with Y-axis concentration, indicating lateral resonance vulnerability. Deformation ratios were used to identify dominant vibrational directions. Based on the findings, design strategies such as structural reinforcement, RPM adjustment, and damping device application were proposed to improve vibration safety in the early design stage.