In this study, we investigated the characteristics of meteorological factors influencing odor emissions based on odor complaint records and meteorological observation data collected from 2014 to 2021 in Seoul, a megacity with a high population density and no regulated facilities or management zones apart from public environmental infrastructure and neighborhood living facilities. A total of 134,976 odor complaints were recorded over eight years (2,922 days), with a daily peak of 946 cases. From 2018 onward, daily complaints consistently exceeded 200 cases, reaching their highest level in 2019. Complaints were regularly and intensively concentrated during specific periods of the year. Among meteorological factors, dry tide time and dominant wind direction exhibited bimodal distributions within the observation range, while the other 11 meteorological factors were concentrated at a single value. The average meteorological conditions during the period with the highest number of odor complaints and observation days were: temperature 24.2oC, surface temperature 26.7oC, local pressure 1,000.4 hPa, sea-level pressure 1,010.8 hPa, vapor pressure 4.3 hPa, solar irradiance 10.5 MJ/m2, precipitation 0.6 mm, relative humidity 61.5%, wind speed 2.2 m/ s, and dominant wind direction 57.9o. These factors corresponded with the periods of highest odor complaints and observation days; however, dew point temperatures (15.3oC and 19.1oC), dry tide times (14.7 hours and 9.7 hours), and sunshine times (15.1 hours and 9.0 hours) did not coincide with those periods. The meteorological factors with the highest odor complaint emission rates (SROCE, cases/day) across 13 sections, ranked in descending order, were: dry tide time (73.5), surface temperature (67.7), solar irradiance (65.1), sea-level pressure (64.3), temperature (62.7), local pressure (62.7), dew point temperature (60.3), vapor pressure (58.7), sunshine times (54.1), relative humidity (53.1), wind speed (51.2), dominant wind direction (48.7), and precipitation (46.3). The intensity of odor complaint emission (IOCE, cases/day), calculated across the entire meteorological observation range, was highest in the following order: solar irradiance (63.8), dry tide time (60.5), sunshine times (60.3), local pressure (57.2), surface temperature (57.1), sea-level pressure (57.0), temperature (56.4), vapor pressure (55.8), dew point temperature (55.7), relative humidity (49.4), dominant wind direction (49.2), wind speed (49.0), and precipitation (46.5). The IOCE for solar irradiance was 37.2% higher than that for precipitation, which had the lowest IOCE. Additionally, the average IOCE of sunlightrelated meteorological factors such as dry tide time, sunshine times, and solar irradiance was 61.5 cases/day, which is 29.5% higher than that of moisture-related factors, including precipitation and relative humidity (47.5 cases/day). These results suggest that sunlight-related factors significantly contribute to odor complaints. This study evaluated the characteristics of odor emissions associated with complaints within the meteorological observation range, identified meteorological factors corresponding to the highest observed odor emissions, and assessed the contribution of these factors to odor emissions based on the IOCE metric. Based on these results, we anticipate being able to predict odor emission levels using weather forecast data.