반응표면 분석법을 이용한 LED 본딩 공정의 다중 반응변수 공정 최적화
In order to confirm the optimal conditions for the LED(Light Emitting Diode) wire bonding process, the lead bump ball process optimization was analyzed. In the wire bonding process, it is an important process in which electrical characteristics operate by connecting the Au wire to the LED chip and lead frame. In the wire bonding method, various wire bonding processes, including thermocompression and ultrasonic bonding, were dealt with, and various variables affecting the lead bump ball process of wire bonding were analyzed through process variable analysis. Key variables for wire bonding working conditions were identified and optimized using the Response Surface Method(RSM) of Design of Experiments(DOE), the interaction between variables was confirmed through factor setting experiments, and the process was optimized using the RSM. This paper aims to improve the performance of the lead bump ball process by designing experiments with 5 factors at 3 levels and analyzing 4 response variables to find optimal conditions. It was confirmed that the performance of the lead bump ball process improved under optimized conditions, and as a result, optimal conditions that satisfied the targets for most reaction values, with the exception of ball diameter (BD), were secured.