Aluminum nitride (AlN) provides excellent thermal conductivity and electrical insulation, making it suitable for semiconductor heater applications. However, its low surface emissivity can lead to thermal energy loss, reducing heater efficiency. To address this issue, black AlN - obtained by doping with carbon and other impurities to enhance the surface emissivity - has recently been applied in various fields. In this study, black AlN was fabricated by adding TiO2 to AlN, and its densification behavior and electrical properties were evaluated to assess the feasibility of its use as a heater material for semiconductor photolithography. The sinterability of black AlN was improved by optimizing the granulation and forming conditions, with a particular focus on the heat treatment parameters that affect material properties such as color. Consequently, a black AlN heater material with a sintered density of 3.33 g/cm3, thermal conductivity of 162.7 W/m・K, and thermal diffusivity of 64.22 mm2/s was fabricated by optimizing the processing variables.