This study investigates the flow resistance and heat transfer characteristics of a fin-and-tube heat exchanger, applied to a water-cooled thermal management system designed for a cabinet-mounted high-performance computer operating aboard naval vessels. The analysis was conducted through both experimental and numerical approaches, focusing on the evaluation of heat transfer performance (j factor) and flow resistance (f factor) under varying air flow rates, while maintaining a fixed fin geometry and arrangement. Particular emphasis was placed on assessing the variation of the j factor along the total length of the heat exchanger to understand the impact of exchanger length on thermal performance. In the numerical analysis, instead of modeling the entire heat exchanger, a representative repeated unit composed of a single fin and twelve connected tubes was simulated. The outlet temperature from each tube segment was sequentially used as the inlet condition for the subsequent segment. This methodology significantly enhances computational efficiency while providing reliable predictions of progressive thermal characteristics along the flow path.