The objective of this study is to quantitatively evaluate the effect of pavement aging on the blow-up occurrence temperature of jointed concrete pavements. Pavement aging reduces the effective joint width through joint deterioration and infiltration of incompressible materials, thus decreasing the trigger temperature for pavement growth (TTPG). The TTPG is defined as the concrete temperature at which all transverse contraction joints within the expansion joint system are completely closed and the slabs begin to behave as a single structural unit. Once the maximum concrete temperature (Tmax) exceeds the TTPG, the temperature difference (ΔT = Tmax−TTPG, i.e., the effective temperature) results in compressive stresses within the slab, thus initiating the blow-up mechanism. A lower TTPG increases ΔT, thus accelerating thermal expansion and the accumulation of the annual maximum compressive stress. Expansive products generated by the alkali-silica reaction (ASR) and higher coefficients of thermal expansion (CTEs) further intensify internal compressive stresses, thus inducing blow-up at lower temperatures. Moreover, the subbase type affects the blow-up occurrence temperature owing to the differences in geometric imperfections and the slab–subbase friction. This study employs the pavement growth and blow-up analysis model to estimate blow-up occurrence temperatures, thus explicitly addressing the combined effect of pavement aging, ASR, CTE, and subbase type.