Sweetpotato whitefly, Bemisia tabaci, is a vector of more than 100 plant-diseased viruses, as well as a serious pest of various horticultural plants. This species harbors a primary endosymbiont Portiera along with several secondary endosymbionts such as Cardinium and Hamiltonella. We investigated whether or not TYLCV acquisition alters the densities of endosymbionts in the body of B. tabaci using quantitative real-time PCR. Our results showed that the densities of both Cardinium and Hamiltonella, but not Portiera, increased upon acquisition of TYLCV. In addition, expression of GroEL, a molecular chaperone produced by Hamiltonella, was significantly upregulated in TYLCV-infected whiteflies. Our results suggest that endosymbionts may play an important role in TYLCV transmission mechanism within the body of B. tabaci.