논문 상세보기

관절 가동운동(mobilization)이 관절 감수기(joint receptors)에 미치는 영향 KCI 등재

Effects of Joint Mobilization Techniques on the Joint Receptors

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/5626
구독 기관 인증 시 무료 이용이 가능합니다. 4,200원
한국전문물리치료학회지 (Physical Therapy Korea)
한국전문물리치료학회 (Korean Research Society of Physical Therapy)
초록

지금까지의 내용을 요약하면 먼저, 인체의 각 관절 주위에는 관절의 움직임과 위치를 파악하는 감지기 역할을 하는 기계적 감수기가 있다. 이러한 감수기는 크게 네가지로 구분되어지는데 대개 I형 감수기, II형 감수기 등의 용어를 사용한다. 각각의 감수기의 특성(표 2.)을 알아보면, 루피니(Ruffini)감각기와 유사한 모양을 하고 있는 I형 관절감수기는 주로 운동의 속도(speed)와 방향(direction)을 감지(detection) 하며, 파시니안(P

Type I, II, III are regarded as "true" joint receptors, type IV is considered a class of pain receptor. Type I, II and III mechanoreceptors, via static and dynamic input, signal joint position, intraarticular pressure changes, and the direction, amplitude, and velocity of joint movements. Type I mechanoreceptor subserve both static and dynamic physiologic functions. Type I are found primarily in the stratum fibrosum of the joint capsule and ligaments. Type I receptors have a low threshold for activation and are allow to adapt to changes altering their firing frequency. Type II receptors have a low threshold for activation. These dynamic receptors respond to joint movement. Type II receptors are thus termed rapidly adapting. Type II joint receptors are located at the junction of the synovial membrane and fibrosum of the joint capsule and intraarticular and extraarticular fat pads. Type III receptors have been found in collateral ligaments of the joints of the extremities. Morphologically similar to Golgi tendon organ. These dynamic receptors have a high threshold to stimulation and are slowly adating. Type IV receptors possess free nerve ending that have been found in joint capsule and fat pads. They are not normally active, but respond to extreme mechanical deformation of the joint as well as to direct chemical or mechanical irritation. Small amplitude oscillatory and distraction movements(joint mobilization) techniques are used to stimulate the mechanoreceptors that may inhibit the transmission of nociceptors stimuli at the spinal cord or brain stem levels.

저자
  • 김선엽(안동전문대학 물리치료과) | Kim Suhn-yeop