Although there have been various studies related to the body's movement from a sitting to a standing position (sit-to-stand task), there is limited information on the kinematic changes on the frontal and transverse planes. The purpose of this study was to ascertain how pelvic tilt affects kinematic changes in the frontal and transverse planes in the hip and knee joints during a sit-to-stand task. For this study, 33 healthy participants (13 female) were recruited. Each participant rose from a sitting to a standing posture at his or her preferred speed for each of three different pelvic tilt trials (anterior, posterior, and neutral), and the measured angles were analyzed using a 3-D motion analysis system. A one-way repeated measure analysis of variance was performed with Bonferroni's post hoc test. In addition, an independent t-test was carried out to determine the sex differences in hip and knee joint kinematic changes during the sit-to-stand tasks. The results were as follows: 1) The hip and knee joint angle in the frontal and transverse planes showed a significant difference between the different pelvic tilt postures during sitting in the pre-buttock lift-off phase (pre-LO) (p<.05). Compared to the posterior pelvic tilt posture, the anterior pelvic tilt posture involved significantly greater hip joint adduction and internal rotation, knee joint adduction, and reduced internal rotation of the knee joint. 2) Sex differences were found with significant differences for males in the initial and maximal angles in the frontal plane of the hip and knee joint (p<.05). Females had a significantly smaller initial abduction angle of the hip joint and a significantly greater maximal angle of the hip adduction joint. These results suggest that selecting a sit-to-stand exercise for pelvic tilt posture should be considered to control abnormal movement in the lower extremities.