논문 상세보기

유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어 KCI 등재

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/6647
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국지진공학회 (Earthquake Engineering Society of Korea)
초록

현재까지 많은 스마트 면진시스템이 제안되었고 연구되어 왔다. 본 연구에서는 스마트 면진시스템의 면진장치와 보조감쇠 장치로서 새로운 형태의 마찰진자시스템(FPS)과 MR 감쇠기를 각각 사용한다. 퍼지로직제어기(FLC)가 고유의 견실성과 비선형 및 불확실성을 쉽게 다룰 수 있는 능력이 있기 때문에 MR 감쇠기의 감쇠력을 조절하는데 FLC를 사용한다. 또한 FLC의 성능을 최적화 하기 위해서는 유전자알고리즘(GA)을 사용한다. GA를 사용함으로써 소속함수의 형상을 조절하는 것뿐만 아니라 적절한 퍼지제어규칙을 결정할 수 있다. 이를 위하여 본 연구에서는 부분개선 유전자알고리즘을 사용하였다. 이 방법은 유전자의 특정부분을 향상시키는데 효율적이다. FPS와 MR 감쇠기의 동적거동을 표현하기 위해서는 뉴로?퍼지 모델을 사용한다. FLC의 최적설계를 위하여 본 연구에서 제안된 방법의 효율성은 여러 가지 역사지진을 사용하여 계산된 동적응답을 기초로 하여 평가한다. 예제해석결과 제안된 방법은 적절한 퍼지규칙을 찾을 수 있고 GA로 최적화된 FLC는 수동제어기 뿐만 아니라 전문가의 지식에 기반한 FLC와 전통적인 준능동제어기보다 더 좋은 성능을 발휘한다.

To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

저자
  • 김현수