유체자유수면의 동적거동을 합리적으로 예측하기 위해서는 비선형 특성을 보이는 자유수면의 동역학적 경계조건을 고려해야할 뿐만 아니라 시간에 따라 변화하는 자유수면의 위치변화에 따른 운동학적 경계조건을 고려하여야 한다. 이러한 문제는 대상구조물이 3차원이 될 경우 더욱 복잡해지므로 3차원 비선형 유체자유수면의 해석은 이론해의 도출이 어려우며 수치해석 방법을 이용하는 것이 효과적이다. 본 연구에서는 수치해석 안정성이 높고 3차원 문제에서도 하나의 변수로 유체거동을 모사할 수 있는 arbitrary Lagrangian-Eulerian approach 를 경계요소에 적용하여 효율적이며 안정적인 유체 대변형 해석기법을 개발하였다. 개발된 기법은 향후 자유수면의 비선형 효과를 고려한 유체-구조물 상호작용 해석에 효과적으로 적용할 수 있을 것으로 판단된다.
The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is nonlinear, but also because the position of the free surface varies with time in a manner not known a priori. Therefore, this nonlinear phenomenon, which is characterized by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. In this study, three-dimensional boundary element method(BEM), which is based on the so-called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only one displacement variable, even for a three-dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the developed procedure.