논문 상세보기

Prediction of Strong Ground Motion in Moderate-Seismicity Regions Using Deterministic Earthquake Scenarios KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/6780
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국지진공학회 (Earthquake Engineering Society of Korea)
초록

For areas such as the Korean Peninsula, which have moderate seismic activity but no available records of strong ground motion, synthetic seismograms can be used to evaluate ground motion without waiting for a strong earthquake. Such seismograms represent the estimated ground motions expected from a set of possible earthquake scenarios. Local site effects are especially important in assessing the seismic hazard and possible ground motion scenarios for a specific fault. The earthquake source and rupture dynamics can be described as a two-step process of rupture initiation and front propagation controlled by a frictional sliding mechanism. The seismic wavefield propagates through heterogeneous geological media and finally undergoes near-surface modulations such as amplification or deamplification. This is a complex system in which various scales of physical phenomena are integrated. A unified approach incorporates multi-scale problems of dynamic rupture, radiated wave propagation, and site effects into an all-in-one model using a three-dimensional, fourth-order, staggered-grid, finite-difference method. The method explains strong ground motions as products of complex systems that can be modified according to a variety of fine-scale rupture scenarios and friction models. A series of such deterministic earthquake scenarios can shed light on the kind of damage that would result and where it would be located.

저자
  • Kang, Tae-Seob | 강태섭