In this research, a comprehensive study is performed upon the design of a quadruped walking robot. In advance, the walking posture and skeletal configuration of the vertebrate are analyzed to understand quadrupedal locomotion, and the roles of limbs during walking are investigated. From these, it is known that the forelimbs just play the role of supportingtheir body anbd help vault forward, while most of the propulsive force is generated by hind limbs. In addition, with the study of the stances on walking and energy efficiency, design criteria and control method for a quadruped walking robot are derived. The proposed controller, though it is simple, provides a useful framework for controlling a quadruped walking robot. In particular, introduction of a new rhythmic pattern generator relieves the heavy computational burden because it does not need any computation on kinematics. Finally, the proposed method is validated via dynamic simulations and implementing in a quadruped walking robot, called AiDIN(Artificial Digitigrade for Natural Environment)