Adult diapause in insects is characterized by suppression of reproductive development. It is induced by environmental cues such as photoperiod, temperature, food availability, and other conditions Diapause-inducing environment is recognized and analyzed by the brain of the insects. The interpreted information is conveyed via endocrine system to target tissues such as ovaries, fat body, and other tissues. From this signal hierarchy of a brain-endocrine-target tissue axis, several factors are involved to express a diapause trait in a quantitative mode, even though the insects show a binomial phenotye between being in diapause or not. Recent works estimated that the number of the factors is relatively small by a series of crossing trials between high and low diapause lines. Heritability of the diapause is quite high (ca. 70%) in some species. Epistasis, sex-linkage, pleiotropism, and other nongenetic components also affect diapause inheritance. Most physiological studies have been focused on control mechanisms of the juvenile hormone (JH) synthesis in corpora allata (CA) because JH level in hemolymph of teneral adults is critical to decide a later developmental mode. Allatostatin, an antagonizer of JH synthesis, has been believed to be a potent brain message to CA for adult diapause induction.