해양환경안전학회지 Vol.26 No.7 (p.922-930)

|Research Paper|
풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat
키워드 :
풍속 분포곡선,풍하중,어선,전산유체역학,유한체적법,Wind speed profile,Wind load,Fishing boat,Computational Fluid Dynamics,Finite Volume Method

목차

요 약
Abstract
1. 서 론
2. 선행연구
3. 수치해석모델
   3.1 대상구조물
   3.2 풍속 모델
   3.3 경계조건 및 메쉬 모델
   3.4 유동해석
4. 수치해석 결과
5. 결 론
References

초록

지난 10년간 복원력 상실에 의한 어선의 해양사고가 지속해서 증가하고 있으며, 갑작스러운 강풍이 주요 원인으로 지적되고 있다. 이러한 강풍에도 견딜 수 있는 어선의 운동·조종성능을 확보하기 위해서는 정밀한 풍하중 예측 기법이 우선되어야 한다. 따라 서 본 연구에서는 전산유체역학 기법을 이용한 어선의 풍하중 평가기법을 개발하고자 한다. 특히, 고도 변화에 따라 풍속이 변화하는 계산환경을 모사하여 그 결과를 균일한 속도분포를 가정한 수치해석 결과와 비교 분석하고자 한다. 본 연구에서는 0-180°까지 15° 간격 으로 13개의 방향에 대해 풍하중을 계산하였으며, 계산에 사용된 메쉬 모델은 메쉬 의존성 시험을 수행하여 개발하였다. 전산수치해석은 RANS(Reynolds-averaged Navier-Stokes) 기반 상용 해석 Solver인 STAR-CCM+(Ver. 13.06)와 k-w 난류 모델을 이용하여 정상상태(Steady State) 유동해석을 수행하였다. 수치해석결과를 간략히 살펴보면 Surge, Sway 및 Heave에서 39.5 %, 41.6 % 및 46.1 % 풍하중이 감소하였으 며 Roll, Pitch 및 Yaw에서 48.2 %, 50.6 % 및 36.5 % 감소하였다. 결론적으로 본 연구에서는 고도에 따른 풍속 변화 모델을 통해 기존보 다 정밀한 수준의 풍하중 추정이 가능한 것을 확인하였으며, 그 결과가 선박의 풍하중 추정 평가기법 발전에 이바지하길 기대한다.
Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the   turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.