In this study, hybrid aerogels containing carbon nanoparticles (CNP) and multi-walled carbon nanotubes (MWCNT) were synthesized via sol–gel method using resorcinol/formaldehyde precursors through a hydrolysis-condensation reaction mechanism. Porous carbonaceous structures were achieved by freeze-drying of the organic gels followed by controlled carbonization under an inert gas. The samples were characterized by various techniques such as FTIR, BJH, FESEM, CV, and EIS. The specific surface area and total pore volume of the aerogel sample were measured to be as high as 452 m2/ g and 0.782 cm3/ g, respectively, thus enhancing the electric double-layer formation. Electrochemical tests on the samples showed a large specific capacitance (212 F/g) and an excellent cyclic stability over 3000 cycles. Performance of the synthesized structures was subsequently assessed as electrodes in a capacitive deionization (CDI) process. At the operating conditions of 1.6 V voltage, flow rate of 20 mL/min, and NaCl concentration of 1000 mg/L a promising adsorption capacity around 42.08 mg/g was achieved.
In this study, gold nanoparticles (AuNPs) were synthesised using green chemistry to decorate multi-walled carbon nanotubes (MWCNTs) made from walnut shells transmission electron microscopy, field-emission scanning electron microscopy (FESEM), atomic force microscopy and fourier transforms infrared spectroscopy were used to diagnose MWCNTs and AuNPs. MWCNT-COOAu, MWCNT-COO and MWCNT-Au were diagnosed by Raman, energy dispersive X-ray analysis and FESEM. The effect of AuNPs, MWCNT-COO, MWCNT-COOAu and MWCNT-Au on pure and serum alkaline phosphatase (ALP) enzyme activity was studied in vitro using the enzyme-substrate 4-nitrophenyl disodium orthophosphate. For pure enzymes, Vmax slightly increased as the concentration of MWCNT-Au, MWCNT-COOAu and MWCNTCOO increased, whereas the Vmax values decreased as the concentration of AuNPs increased. The inhibition type for all NPs varied. For serum ALP enzyme, the Vmax values for Au-based NPs decreased as the concentration of NPs increased. The Vmax values exceeded the standard value at the concentrations of 25, 50 and 75 ppm for MWCNT-Au and MWCNT-COOAu, whereas the Vmax values increased over the standard value for all concentrations of AuNPs.
In this study, waste corrugated paper was used as carbon precursor with KOH-NaOH mixture (mole ratio was 51:49 and the melting point is 170 °C) as activator to prepare porous carbon at different reaction temperature and different mass ratio of KOH-NaOH mixture/waste corrugate paper fiber. The micro-morphology, pore structure information and composition of porous carbon were analyzed, and the formation mechanism of pores was investigated. The effect of activator amount and pyrolysis temperature on the morphology and structure of porous carbon were studied. The adsorption capacity of porous carbon was evaluated with the methylene blue as model pollutant. The effect of adsorbent amount, adsorption time and temperature on the adsorption performance of the porous carbon were analyzed. The maximum specific surface area is 1493.30 m2 ·g−1 and the maximum adsorption capacity of methylene blue is 518 mg·g−1. This study provides a new idea for efficient conversion and utilization of waste paper.
Carbon-based materials have emerged as an excellent class of biomedical materials due to their exceptional mechanical properties, lower surface friction, and resistance to wear, tear, and corrosion. Experimental studies have shown the promising results of carbon-based coatings in the field of biomedical implants. The reasons for their successful applications are their ability to suppress thrombo-inflammatory reactions which are evoked as an immune response due to foreign body object implantation. Different types of carbon coatings such as diamond-like carbon, pyrolytic carbon, silicon carbide, and graphene have been extensively studied and utilized in various fields of life including the biomedical industry. Their atomic arrangement and structural properties give rise to unique features which make them suitable for multiple applications. Due to the specificity and hardness of carbon-based precursors, only a specific type of coating technique may be utilized for nanostructure development and fabrication. In this paper, different coating techniques are discussed which were selected based on the substrate material, the type of implant, and the thickness of coating layer. Chemical vapor deposition-based techniques, thermal spray coating, pulsed laser deposition, and biomimetic coatings are some of the most common techniques that are used in the field of biomaterials to deposit a coating layer on the implant. Literature gathered in this review has significance in the field of biomedical implant industry to reduce its failure rate by making surfaces inert, decreasing corrosion related issues and enhancing biocompatibility.
This study investigated durian (Durio zibethinus) peels to produce powdered activated carbon (DPAC). The influence of process variables such as carbonization temperature, activation time, contact time, CO2 flow rate, and adsorption dosage was optimized using response surface methodology (RSM). A six-factor and two levels Box–Behnken design (BBD) was used to optimize the parameters. The independent variables were activation temperature (°C), duration (min), CO2 flow rate during the activation process (L/min), irradiation of adsorbent (kGy), irradiation duration (min), and adsorbent dosage (g) while phenol removal (mg/L) was the dependent variable (response). Following the observed correlation coefficient values, the design was fitted to a quadratic model (R2 = 0.9896). The optimal removal efficiency (97.25%) was observed at an activation temperature of 900 °C, activation time of 30 min, CO2 flow rate of 0.05 L/min, irradiation dose of 100 kGy, contact time of 35 min and adsorption dosage of 0.75 g. The optimal DPAC showed a BET surface of 281.33 m2/ g. The removal efficiency was later compared with a commercially available activated carbon which shows a 98.56% phenol removal. The results show that the durian peel could be an effective precursor for making activated carbon for phenol removal, and irradiation can significantly enhance surface activation.
In this work, subabul wood biomass was used to prepare carbon adsorbents by physical and chemical activation methods at various carbonization temperatures. The properties of the carbon adsorbents were estimated through characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, X–ray photo electron spectroscopy, laser Raman spectroscopy, scanning electron microscopy, CHNS-elemental analysis and N2 adsorption studies. Subabul-derived carbon adsorbents were used for CO2 capture in the temperature range of 25–70 °C. A detailed adsorption kinetic study was also carried out. The characterization results indicated that these carbons contain high surface area with microporosity. Surface properties were depended on treatment method and carbonization temperature. Among the carbons, the carbon prepared after treatment of H3PO4 and carbonization at 800 °C exhibited high adsorption capacity of 4.52 m.mol/g at 25 °C. The reason for high adsorption capacity of the adsorbents was explained based on their physicochemical characteristics. The adsorbents showed easy desorption and recyclability up to ten cycle with consistent activity.
Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.
Medicinal plant-derived carbon dots are eco-friendly and possess therapeutic properties. Among the medicinal plants studied throughout the world, Centella asiatica (L.) Urb. is known for its medicinal values, especially its neuroceutical and cogniceutical properties. This work discusses the green synthesis of carbon dots (CDs) using C. asiatica leaves as the carbon source via fast and cost-effective microwave-assisted method, and its physico-chemical characterization via UV–visible, fluorescence and FTIR spectrometry, XRD, SEM, AFM, TEM, SAED, EDX and zeta potential analyses. The study revealed quasi-spherical CDs having size ~ 3–6 nm, polycrystalline nature, and presence of various functional groups like –COOH, –H, =CH2 and C–O–C with UV absorption peaks at 213 and 322 nm. Interestingly, the C. asiatica-derived CDs exhibited blue fluorescence under UV with maximum emission wavelength of 460 nm when excited at 400 nm. Further, these CDs were evaluated for their biological applications, which uncovered their potential in therapeutics such as antimicrobial properties against both Gram-positive and Gram-negative bacteria at a dose of 10 μg, strong antioxidant activity with IC50 values of 165.28 and 128.48 μg mL− 1 in DPPH and H2O2 assays, respectively, and profound anti-inflammatory activity with IC50 value of 106.20 μg mL− 1 in protein denaturation assay. The CDs were also assessed for cytotoxicity using whole blood cells and were found to be safe for in vitro administration. Thus, the C. asiatica-derived CDs can be exploited for their potent biomedicinal properties. Fluorescent carbon dots (CDs) were prepared by microwave-assisted pyrolysis of Centella asiatica leaf extract and purification. The as synthesized CDs were subjected to various physico-chemical characterization and biomedical assays to understand its properties.
Nowadays, variable materials have been investigated to find alternative lightweight conductors instead of copper because copper has a relatively high density. Carbon nanotube (CNT) is one of the most suitable materials as an alternative conductor to Cu, thanks to its high conductivity. In addition, CNT has many other great properties, such as low density, high strength, and high ampacity. However, individual CNT loses some of its performance after the assembly process. Therefore, CNT materials have been electroplated with copper to achieve lighter conductors. In this study, CNT buckypaper (CNTBP) is fabricated using a multi-walled carbon nanotube and copper electroplated using optimizing electrolyte with the help of additive chemicals such as accelerator and suppressor. Furthermore, the effect of hydrochloric acid in the electrolyte on the electroplating of CNTBP is observed. The results show that HCl in electrolyte enhances the effectiveness of additive chemicals and provide a well-plated CNTBP@Cu composite. The composite in this study is expected to be used in various areas.
In recent years, people are increasingly interested in CO2 hydrogenation to produce value-added chemicals and fuels ( CH4, CH3OH, etc.). In the quest for an efficient treatment in CO2 methanation and methanolization, several technologies have been practiced, and DBD plasma technology gain attention due to its easily handling, mild operating conditions, strong activation ability, and high product selectivity. In addition, its reaction mechanism and the effect of packing materials and reaction parameters are still controversial. To address these problems efficiently, a summary of the reaction mechanism is presented. A discussion on plasma-catalyzed CO2 hydrogenation including packing materials, reaction parameters, and optimizing methods is addressed. In this review, the overall status and recent findings in DBD plasma-catalyzed CO2 hydrogenation are presented, and the possible directions of future development are discussed.
Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.
본 정성적 연구는 네팔 극서부 바주라(Bajura) 지구의 부디 강가 05구역(Budhiganga-05) 중심부에서 유의추출법을 활용했 다. 본 연구에는 다양한 직업, 카스트, 문화, 언어, 식자 수준 및 배경을 가진 다양한 인구가 참여했다. 연구 지역의 총 213명의 가임기 여성 중 30명이 월경 중인 여성으로 밝혀졌다. 연구자 들은 참가자들의 경험에 대한 데이터를 수집하기 위해 설문지, 직접 심층 인터뷰, 관찰, 회의 및 대화를 사용했다. 응답자들이 제공하는 '차우파디 관습(Chhaupadi Pratha)‘에 대한 서술적 설 명은 연구에 크게 기여하여 타당성을 높일 것이다. 정성적 구 성 요소는 차우파디 관습을 겪은 여성들과 지역 사회 지도자, 종교인, 의료 제공자와의 심층 인터뷰로 구성된다. 이 인터뷰는 차우파디 파르타를 뒷받침하는 문화적, 종교적 신념을 탐구하 고 여성에 대한 사회적, 심리적 의미를 탐구한다. 또한 인터뷰 는 근절을 위한 잠재적인 전략을 포함하여 이 관습에 대한 주 요 이해 관계자의 태도와 인식에 대해 조명한다. 본 연구의 결과물을 통해 네팔 여성의 월경 건강에 대한 기 존 지식과 월경 금기 및 성 불평등에 대한 광범위한 담론에 기 여할 것으로 기대된다. 연구 결과는 차우파디 관습을 철폐하고 월경 건강 및 성평등을 촉진하기 위한 상황에 맞는 개입을 개 발하기 위해 정책 입안자, NGO 및 지역 사회 지도자에게 중요 한 통찰력을 제공할 것이다. 궁극적으로 이 연구가 차우파디 와 같은 전통적인 관습의 해로운 영향을 다루면서 네팔 여성의 월경 건강과 웰빙을 위해 보다 포용적이고 지원적인 환경을 조 성하는 데 도움이 되기를 바란다.
This study aimed to build on past findings about differences in personal walking experiences by demonstrating what elements were beneficial to participants with different walking habits. Accordingly, this study established the relationships between valued walking elements and people’s motivation to walk, by dividing participants into three groups: Group W for people with a walking habit, Group HW for people who walk occasionally but not regularly, and Group NW for people who do not walk habitually. Participants walked a familiar and an unfamiliar route with a wearable device that recorded their heart-rate variability and electrodermal activity. Changes in the biometric data helped to identify the defining moments in each participant’s walk. Participants discussed these moments in one-on-one interviews with a researcher to pinpoint their valued walking elements. As a result, this study classified walking elements into six themes: “Surroundings,” “Social,” “Exploration,” “Route Plan,” “Physical Exercise,” and “Mental Thinking.” A walking habit development model was made to show how “Route Plan” and “Exploration” were beneficial to Group NW, “Social” and “Surroundings” were beneficial to Group HW, and “Route Plan,” “Mental Thinking,” and “Physical Exercise” were beneficial to Group W.
단단한 자구를 가진 적색 비모란선인장 ‘Gangjeok’ 품종 은 ‘Isaek’품종을 모본으로, ‘Suyeon’ 품종을 부본으로 하여 2018년에 교배하여 육성하였다. 교배 후 획득한 종자는 조직 배양실에서 기내파종하여 획득한 유묘를 기내에서 삼각주선 인장에 접목하여 ‘1802001’ 등 20계통을 양성하였다. 2019 년에 기내에서 양성한 20계통을 온실에서 삼각주선인장 대목 에 접목하여 재배하면서 ‘1812005’ 계통을 1차 선발하였다. 2020년부터 2022년까지 3차에 걸쳐서 특성을 검정한 후, 농 산물직무육성품종 심의회에서 최종 선발하여 ‘Gangjeok’으 로 명명하였다.‘Gangjeok’ 품종은 편원형의 적색 구를 가진 다. 혹(tubercle)이 돌출된 형태의 모구는 8.4개의 능(rip)을 가지며, 3.5mm 짧은 회색 가시가 발생한다. 정식 10개월 후 ‘Gangjeok’ 품종의 직경은 46.1mm이며, 자구는 평균 18.3 개 발생한다. 2022년 육성계통 평가회에서 ‘Gangjeok’ 품종 은 높은 기호도 점수 4.0을 받았다.
An aeroponic seed potato production technology project has been established in Pakistan through the Technical Cooperation Project (TCP) between RDA-KOPIA and PARC. For sustainable potato production, producing high-quality and disease-free potato seeds is critical in Pakistan. The majority of the farmers recycle their own seeds or obtain them through informal ways. Consequently, tuber-borne illnesses proliferate, seeds deteriorate, and yield diminishes. To mitigate such problems, the country moved to sustainable seed potato production by adopting rapid seed multiplication strategies like the combination of tissue culturing with aeroponic seed production technology which is being evaluated as an alternative to traditional pre-basic seed production methods. A series of experiments were carried out to evaluate the shoot development and mini tuber production attributes between two cultivars, different plantlet size and planting period between October 27, 2021, and January 27, 2022, at the NARC aeroponic facility. A CRD design with three replications was used. The study aimed to compare the productivity by variety, plantlet size and planting period to improve aeroponic seed production technology in Pakistan. The results indicated that Lady Rosetta outperformed Asterix in terms of shoot growth and small tuber output. Early planting at an optimal temperature of 27 degrees Celsius in the daytime showed a substantial difference when compared to late planting in November and tuberization was commenced 50-55 days after transplantation. Furthermore, in an aeroponic seed potato production system, normal plantlets (8-10 cm) at the time of transplantation, performed better than medium and small plantlets. In a nutshell, it was determined that normal size plantlets (8-10 cm) of Lady Rosetta cultivar, planted at optimum time to plant showed best results in the aeroponic system at NARC, Islamabad, Pakistan.
Crowded pet shops can become infected with various pathogens. Although dog carriers of Clostridioides difficile tend to be asymptomatic, the toxigenic strains sometimes cause gastrointestinal symptoms in humans. The present study was conducted to determine the infection rate of C. difficile in pet shops. The feces of 137 dogs younger than one year of age, collected from four pet shops, were assessed by culture and PCR. Carriage rates of C. difficile in dogs aged ≤90, 91-180, and ≥181 day-old were 12.2% (10/82, 95% confidence interval: 6.0-21.3%), 0.0% (0/42, 95% confidence interval: 0.0-8.4%), and 7.7% (1/13, 95% confidence interval: 0.2-36.0%), respectively. Five C. difficile isolates carried genes encoding toxins A and B, while the remaining isolates contained only toxin B. However, none of the C. difficile carriers had diarrhea. These results highlight the necessity of promoting adequate hygiene precautions in pet shops to prevent infection by C. difficile.
Background: Germ cells undergo towards male or female pathways to produce spermatozoa or oocyte respectively which is essential for sexual reproduction. Mesenchymal stem cells (MSCs) have the potential of trans-differentiation to the multiple cell lineages.
Methods: Herein, rat MSCs were isolated from bone marrow and characterized by their morphological features, expression of MSC surface markers, and in vitro differentiation capability.
Results: Thereafter, we induced these cells only by retinoic acid supplementation in MSC medium and, could able to show that bone marrow derived MSCs are capable to trans-differentiate into male germ cell-like cells in vitro. We characterized these cells by morphological changes, the expressions of germ cell specific markers by immunophenotyping and molecular biology tools. Further, we quantified these differentiated cells.
Conclusions: This study suggests that only Retinoic acid in culture medium could induce bone marrow MSCs to differentiate germ cell-like cells in vitro . This basic method of germ cell generation might be helpful in the prospective applications of this technology.
Toll-like receptor 4 (TLR4) is known to contribute to the modulation of insulin resistance and systemic inflammation seen in obesity and the metabolic syndrome. The present study was performed to investigate the fertility competence of TLR4 knock out male mice (TLR4 mice) on a high-fat diet (HFD), compared to a normal-chow diet (NCD). The controls included wildtype (WT) mice fed on a HFD or NCD. Six-week-old male mice were fed with either a NCD or HFD for 20 weeks. Body and organ weights, serum levels of glucose, triglycerides and hepatoxicity, sperm quality and spermatogenesis were observed after the sacrifice. Also, randomly selected male mice were mated with virgin female mice after feeding of 19 weeks. The weight of the body and organs increased in WT and TLR4 mice on a HFD compared to those of mice on a NCD. The weights of the reproductive organs did not vary among the treatment groups. The motility and concentration of the epididymal spermatozoa decreased in both WT and TLR4 mice fed a HFD. The pregnancy rate and litter size declined in the HFD-fed WT mice compared to the HFD-fed TLR4 mice. In conclusion, the HFD alters energy and steroid metabolism in mice, which may lead to male reproductive disorders. However, fertility competence was somewhat restored in HFD-fed TLR4 male mice, suggesting that the TLR4 is involved in testis dysfunction due to metabolic imbalance.
This study assessed the utility of netted melon ‘Top Earl’s’ and cantaloupe melon ‘Alex’ as functional fruits by analysing their moisture content, vitreous sugar, folic acid, citric acid, and beta-carotene levels. High-performance liquid chromatography (HPLC) was used to analyse the free sugar, folic acid, citric acid, and beta-carotene levels. The moisture content was not significantly different between ‘Top Earl’s’ and ‘Alex.’ The glucose, sucrose, and fructose contents were three, two, and one-and-a-half fold higher in ‘Alex’ than in ‘Top Earl’s.’ Moreover, citric acid was approximately three times higher in ‘Alex’ than that in Top Earl’s.’ However, the folic acid content was higher in ‘Top ‘Earl’s’ than ‘Alex,’ and the amount was 124 μg / 100 g FW and 112 μg / 100 g FW respectively. ‘Beta-carotene was undetectable in ‘Top Earl’s,’ whereas it was 1000 μg / 100 g FW in ‘Alex.’ β-carotene, a substance that is converted in the body into vitamin A and acts as an antioxidant, is an important component in healthy food. These results suggested that the cantaloupe melon ‘Alex’ has a higher free sugar content and functional ingredients, such as antioxidants, including citric acid and beta carotene, than the netted melon ‘Top Earl’s.’