검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 138

        21.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent updates of the North Ecliptic Pole deep (0.5 deg2, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15 μm or 18 μm selected galaxies, which is the largest sample ever made at these wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24 μm) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to z=2. The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. z=1{2), and to find a clue to understand its decline from z=1 to present universe by utilizing the unique power of the multiwavelength survey. The progress in this context is brie y mentioned.
        4,000원
        24.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.
        4,000원
        25.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sulphonated polysulphone (SPS) has been synthesized and subsequently applied as binder for graphene oxide (GO)-based electrodes for development of electrochemical supercapacitors. Electrochemical performance of the electrode was investigated using cyclic voltammetry in 1M Na2SO4 and 1M KOH solution. The fabricated supercapacitors gave a specific capacitance of 161.6 and 216.8 F/g with 215.4 W/kg and 450 W/kg of power density, in 1M Na2SO4 and 1M KOH solutions, respectively. This suggests that KOH is a better electrolyte than Na2SO4 for studying the electrochemical behavior of electroactive material, and also suggests SPS is a good binder for fabrication of a GO based electrode.
        4,000원
        27.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough - but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect 154 new low-mass planets.
        4,000원
        28.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polarbear is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic in ation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1,274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.
        3,000원
        29.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present a kinematic study of the parsec-scale radio jet in OJ 287, one of the most studied BL Lac objects, during γ-ray ares, to explore the relation between parsec-scale radio jet activity and γ-ray emission. The 22-GHz light curve of OJ 287 show three obvious are events around 2011 May, 2011 October, and 2012 March. The second radio are occurred during the γ-ray aring period, and the third radio are seemed to precede the γ-ray are by one month. One jet component moved outward with respect to the core component with an apparent superluminal speed (~ 11c) from 2010 November to 2011 November. Then it changed direction, moving apparently inward in 2011 November, when the γ-ray are occurred. The observed apparent inward motion of the jet at 22 GHz could be caused by a new jet component, unresolved at 22 GHz, in the innermost region.
        3,000원
        31.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many observations have found evidence of the presence of a large number of heavily obscured Active Galactic Nuclei (AGNs). However, the nature of this population is only poorly understood because heavy obscuration by dust prevents one from finding them at optical wavelengths. Mid-infrared AGN searches can overcome this obstacle by penetrating through dust and by detecting direct emission from the dust torus. Thus, we can identify most of the AGN population, including type-2 and buried AGNs. Using the AKARI mid-infrared all-sky survey, we performed an AGN search in the nearby universe. Utilizing the 2MASS photometry, we selected mid-infrared-excess sources and carried out near-infrared spectroscopic observations in the AKARI Phase 3. During these follow-up observations, we have found three galaxies that show strong near-infrared red continuum from hot dust with a temperature of about 500 K, but do not show any AGN features in other wavelengths. The most suitable explanation of near-infrared continuum is the presence of central AGNs. Therefore, we conclude that they are AGNs obscured by dust. We performed X-ray observations of the two galaxies with SUZAKU. No detections in the 0.4-10 keV suggest that the column density may be much higher than NH=1023.5cm−2 . Comparing the masses of the host galaxies with those of the SDSS AGNs, we find that the host galaxies of the dusty AGNs discovered with AKARI are less massive populations than those of optically selected AGNs.
        4,000원
        32.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        With AKARI, we carried out near-infrared spectroscopy of the nearby barred spiral galaxy, NGC 1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the galactic center region. As a result, we obtain the spatial distributions of the polycyclic aromatic hydrocarbon 3.3μm and the aliphatic hydrocarbon 3.4−3.6 μm emission. The former is detected from all the observed regions and the latter is enhanced near the bar connecting the ring with the nucleus. In addition, we detect absorption features due to H2O ice and CO/SiO at the ring and the galactic center, while we detect the hydrogen recombination line Brα only from the ring. Hence the observed spectra change dramatically within the central 1 kpc region.
        33.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The absorption features due to interstellar ices, especially H2O and CO2 ices, provide us with crucial information on present and past interstellar environments, and thus the evolutionary histories of galaxies. Before AKARI, however, few detections of ices were reported for nearby galaxies. The AKARI's unique capability of near-infrared spectroscopy with high sensitivity enables us to systematically study ices in nearby galaxies. Thus we have explored many near-infrared spectra ( 2.5−5μm ) of the 211 pointed observations, searching for the absorption features of ices. As a result, out of 122 nearby galaxies, we have significantly detected H2O ice from 36 galaxies and CO2 ice from 9 galaxies. It is notable that the ices are detected not only in late-type galaxies but also in early-type galaxies. We find that CO2 ice is more compactly distributed near the galactic center than H2O ice. Finally, we suggest that the gas density of a molecular cloud and UV radiation may be important factors to determine the abundance of ices.
        3,000원
        34.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        Among the AKARI all-sky survey data, the 9 μm diffuse map is crucial to study the polycyclic aromatic hydrocarbon (PAH) emission features on large spatial scales, while the 18 μm map is useful to trace hot dust emission. To utilize these advantages, we have improved the AKARI mid-infrared (MIR) all-sky survey diffuse maps. For example, we have established special methods to remove the effects of the ionizing radiation in the South Atlantic Anomaly (SAA) and of the scattered light from the moon. Using improved diffuse map data, we study the properties of PAHs and dust in the Galactic center region associated with high-energy phenomena.
        35.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        Using the AKARI mid-infrared all-sky survey catalogue, we are searching for debris disks which are important objects as an observational clue to on-going planetary system formation. Debris disk candidates are selected through a significant excess of the measured flux over the predicted flux for the stellar photospheric emission at 18 μm . The fluxes were originally estimated based on the near-infrared spectral energy distributions (SEDs) of central stars constructed from the 2MASS J-, H-, and Ks-band fluxes. However, we found that in many cases the 2MASS photometry has large errors due to saturation in the central part of a star image. Therefore we performed follow-up observations with the IRSF 1.4m near-infrared telescope in South Africa to obtain accurate fluxes in the J-, H-, and Ks-bands. As a result, we have succeeded in improving the SEDs of the central stars. This improvement of the SEDs allows us to make more reliable selection of the candidates.
        36.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An overview of the North Ecliptic Pole (NEP) deep multi-wavelength survey covering from X-ray to radio wavelengths is presented. The main science objective of this multi-wavelength project is to unveil the star-formation and AGN activities obscured by dust in the violent epoch of the Universe (z=0.5-2), when the star formation and black-hole evolution activities were much stronger than the present. The NEP deep survey with AKARI/IRC consists of two survey projects: shallow wide (8.2 sq. deg, NEP-Wide) and the deep one (0.6 sq. deg, NEP-Deep). The NEP-Deep provides us with a 15 μm or 18 μm selected sample of several thousands of galaxies, the largest sample ever made at these wavelengths. A continuous filter coverage at mid-IR wavelengths (7, 9, 11, 15, 18, and 24 μ m ) is unique and vital to diagnose the contribution from starbursts and AGNs in the galaxies at the violent epoch. The recent updates of the ancillary data are also provided: optical/near-IR magnitudes (Subaru, CFHT), X-ray (Chandra), FUV/NUV (GALEX), radio (WSRT, GMRT), optical spectra (Keck/DEIMOS etc.), Subaru/FMOS, Herschel/SPIRE, and JCMT/SCUBA-2.
        4,000원
        37.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The interstellar dust grains are formed and supplied to interstellar space from asymptotic giant branch (AGB) stars or supernova remnants, and become constituents of the star- and planet-formation processes that lead to the next generation of stars. Both a qualitative, and a compositional study of this cycle are essential to understanding the origin of the pre-solar grains, the missing sources of the interstellar material, and the chemical evolution of our Galaxy. The AKARI/MIR all-sky survey was performed with two mid-infrared photometric bands centered at 9 and 18 μ m . These data have advantages in detecting carbonaceous and silicate circumstellar dust of AGB stars, and the interstellar polycyclic aromatic hydrocarbons separately from large grains of amorphous silicate. By using the AKARI/MIR All-Sky point source catalogue, we surveyed C-rich and O-rich AGB stars in our Galaxy, which are the dominant suppliers of carbonaceous and silicate grains, respectively. The C-rich stars are uniformly distributed across the Galactic disk, whereas O-rich stars are concentrated toward the Galactic center, following the metallicity gradient of the interstellar medium, and are presumably affected by the environment of their birth place. We will compare the distributions of the dust suppliers with the distributions of the interstellar grains themselves by using the AKARI/MIR All-Sky diffuse maps. To enable discussions on the faint diffuse interstellar radiation, we are developing an accurate AKARI/MIR All-Sky diffuse map by correcting artifacts such as the ionising radiation effects, scattered light from the moon, and stray light from bright sources.
        4,000원
        39.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A nuclear, biological, chemical (NBC) canister was indigenously developed using active carbon impregnated with ammoniacal salts of copper (II), chromium (VI) and silver (I), and high efficiency particulate aerosol filter media. The NBC canister was evaluated against carbon tetra chloride (CCl4) vapours, which were used as a simulant for persistent chemical warfare agents under dynamic conditions for testing breakthrough times of canisters of gas masks in the National Approval Test of Respirators. The effects of CCl4 concentration, test flow rate, temperature, and relative humidity (RH) on the breakthrough time of the NBC canister against CCl4 vapour were also studied. The impregnated carbon that filled the NBC canister was characterized for surface area and pore volume by N2 adsorption-desorption isotherm at liquid nitrogen temperature. The study clearly indicated that the NBC canister provides adequate protection against CCl4 vapours. The breakthrough time decreased with the increase of the CCl4 concentration and flow rate. The variation in temperature and RH did not significantly affect the breakthrough behaviour of the NBC canister at high vapour concentration of CCl4, whereas the breakthrough time of the NBC canister was reduced by an increase of RH at low CCl4 vapour concentration.
        4,000원
        40.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon was prepared from pre-carbonized petroleum coke. Textural properties were determined from studies of the adsorption of nitrogen at 77 K and the surface chemistry was obtained using the Fourier-transform infrared spectrometer technique and the Boehm titration process. The adsorption of three aromatic compounds, namely phenol (P), p-nitrophenol (PNP) and benzoic acid (BA) onto APC in aqueous solution was studied in a batch system with respect to contact time, pH, initial concentration of solutes and temperature. Active carbon APC obtained was found to possess a high surface area and a predominantly microporous structure; it also had an acidic surface character. The experimental data fitted the pseudo-second-order kinetic model well; also, the intraparticle diffusion was the only controlling process in determining the adsorption of the three pollutants investigated. The adsorption data fit well with the Langmuir and Freundlich models. The uptake of the three pollutants was found to be strongly dependent on the pH value and the temperature of the solution. Most of the experiments were conducted at pH 7; the pH(PZC) of the active carbon under study was 5.0; the surface of the active carbon was negatively charged. The thermodynamic parameters evaluated for APC revealed that the adsorption of P was spontaneous and exothermic in nature, while PNP and BA showed no-spontaneity of the adsorption process and that process was endothermic in nature.
        4,000원
        1 2 3 4 5