검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 103

        102.
        2003.09 서비스 종료(열람 제한)
        Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without -estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.
        103.
        2003.09 서비스 종료(열람 제한)
        The uterus undergoes dynamic changes during the cycle and displays many features typical of developmental process. In order to be prepared for implantation, endometrium undergoes predictable, sequential phases of proliferation and secretory changes. The uterus during estrus cycle synthesize a complex of signaling molecules with specific spatial and temporal modes of expression and which are critical for cell proliferation and differentiation. The purpose of this investigation was to use cDNA microarrays to evaluate the expression of genes of rat uterus in estrus cycle. Animals were sacrificed on proestrus, estrus, metestrus, diestrus. Differential gene expression profiles were revealed(growth-related c-myc reponsive protein RCL, heat shock 47-kDa protein (HSP47), cytochrome c oxidase polypeptide Vlc2 (COX6C2), calreticulin (CALR)). Reverse transcription polymerase chain reaction (RT-PCR) was used to validate the relative expression pattern. Using this approach, we found several genes whose expression in rat uterus was altered with estrus cycle. Our long-term goal is to determine the role of these differentially expressed genes during estrus cycle. This study was supported by through the Biohealth Products Research Center(BPRC), Inje University.
        6