검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study attempts to find optimal conditions of the friction coefficient using a discrete element method (DEM) simulation with various friction coefficient conditions and three different grinding media with various ball sizes in a traditional ball mill (TBM). Using ball motion of the DEM simulation are obtained using the optimal friction coefficient compared with actual motion; photographs are taken by the digital camera and the snapshot images are analyzed. In the simulation, the rotation speed of the mill, the materials and velocity of the grinding media, and the friction coefficient between the balls and the wall of the pot are fixed as the actual experimental conditions. We observe the velocity according to the friction coefficient from the DEM simulation. The friction coefficient is found to increase with the velocity. Milling experiments using a traditional ball mill with the same experimental conditions as those of the DEM simulation are conducted to verify the simulated results. In addition, particle morphology change of copper powder is investigated and analyzed using scanning electron microscopy (SEM) for the milling experiment.
        4,000원
        2.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of the grinding media of a ball mill under various conditions on the raw material of copper powder during the milling process with a simulation of the discrete element method. Using the simulation of the three-dimensional motion of the grinding media in the stirred ball mill, we researched the grinding mechanism to calculate the force, kinetic energy, and medium velocity of the grinding media. The grinding behavior of the copper powder was investigated by scanning electron microscopy. We found that the particle size increased with an increasing rotation speed and milling time, and the particle morphology of the copper powder became more of a plate type. Nevertheless, the particle morphology slightly depended on the different grinding media of the ball mill. Moreover, the simulation results showed that rotation speed and ball size increased with the force and energy.
        4,200원
        3.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.
        4,300원