검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        Plant peroxidases (PODs) have been shown to reduce hydrogen peroxide (H2O2) in the presence of an electron donor. Extracellular POD also induce H2O2 production, and can perform a significant function in responses to environmental stresses. We previously described the isolation of 10 POD cDNA clones from cell cultures of sweetpotato (Ipomoea batatas). Among them, the expression of the swpa4 gene was profoundly induced by a variety of stresses. In this study, transgenic tobacco (Nicotiana tabacum) plants overexpressing the swpa4 gene under the control of the CaMV 35S promoter were generated in order to assess the function of swpa4. Both transient expression analysis with the swpa4-GFP fusion protein and POD activity assays in the apoplastic washing fluid revealed that the swpa4 protein is secreted into the apoplastic space. The transgenic plants also evidenced a significantly enhanced tolerance to a variety of abiotic and biotic stresses. These plants harbored increased lignin and phenolic content, and H2O2 was also generated under normal conditions. Furthermore, they manifested increased expression levels of a variety of apoplastic acidic pathogenesis-related (PR) genes following enhanced H2O2 production. These results suggest that the expression of swpa4 in the apoplastic space functions as a positive defense signal in the H2O2-regulated stress response signaling pathway.
        3.
        2004.11 KCI 등재 서비스 종료(열람 제한)
        Karyotypes were established in the eight Korean native species of the genus Iris. Chromosome numbers were 2n=50 in I. koreana and 2n=42 in I. uniflora var. carinata and their karyotype formulas were K = 2n = 50 = 14m + 28sm + 8st and K = 2n = 42 = 16m + 26sm, respectively. I. dichotoma and I. pseudoacorus were diploids of 2n=34. However, they showed different karyotype formulas: K = 2n = 34 = 26m + 6sm + 2st in I. dichotoma and K = 2n = 34 = 8m + 24sm + 2st in I. pseudoacorus. I. setosa, and I. pallasii var. chinensis carried the same chromosome numbers of 2n=40, but they showed different patterns of karyotype formula: K = 2n = 40 = 22m + 14sm + 4st in I. setosa and K = 2n = 40 = 26m + 12sm + 2st in I. pallasii var. chinensis. I. sanguinea was a diploid of 2n=28 and the karyotype formula was K = 2n = 28 = 14m + 14sm. I. ensata var. spontanea was a diploid of 2n=24 and the karyotype formula was K = 2n = 24 = 10m + 14sm. Each species showed characteristic chromosome composition with a pair of satellite chromosome except I. koreana with three pairs of satellite chromosomes. The chromosomes of I. dichotoma and I. uniflora were comparatively short, while the chromosomes of I. ensata were remarkably bigger than those of other species. These cytological data will give a useful information for the identification and breeding program of the Iris plants.
        4.
        2004.11 KCI 등재 서비스 종료(열람 제한)
        The chromosome numbers and karyotypes were investigated in four Korean native species of the genus Hosta. The chromosome complements were diploid of 2n=60 in H. japonica var. lancifolia Nakai and H. capitata Nakai, aneuploid of 2n=59 in H. minor (Bak.) Nakai, and modified triploid of 2n=92 in H. longipes (Fr. et Sav.) Matsumura. All the species carried four sets of distinctly large chromosomes of which the chromosome types were telocentrics or subtelocentrics with 4.4~7.2 μm in length. The other chromosomes were meta-, submeta, subtelo-, or telocentric types and showed gradual length degradation in the range of 1.0~3.0 μm. The satellites appeared vestigially in a pair or a triplet set of chromosomes which depends on the species. New chromosome number and karyotype in H. longipes were the first report in this species. The structural rearrangement was suggested to explain the modified triploid composition of 2n=92.
        5.
        2003.11 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to compare chromosomal characteristics between Atractylodes japonica and A macrocephala. Cytogenetic analysis was conducted based on karyotype analysis and physical mapping using fluorescence in situ hybridization. As a result of karyotype analysis by feulgen staining, somatic chromosome numbers of A. japonica and A. macrocephala were 2n=24. The length. of the mitotic metaphase chromosomes of A. japonica ranged from 0.70 to 1.60μm with a total length. of 12.11μm and the homologous chromosome complement comprised six metacentrics, five submetacentrics and one subtelocentrics. On the other hand, the length of the mitotic metaphase chromosomes of A. macrocephala ranged from 0.90 to 2.35μm with a total length of 16.58μm and the homologous chromosome complement comprised seven metacentrics and five submetacentrics. The total length of A. japonica chromosomes was shorter than that of A. macrocephala, but A. japonica had one subtelocentrics (chromosomes 4) different from A. macrocepha1a. chromosomes. The F1SH technique using 17S and 5S rDNA was applied to metaphase chromosomes. The signals for 17S rDNA were detected on the telomeric regions of chromosomes 4 and 5 in both A japonica and A. macrocephala. The 5S rDNA signal was found in the short arm of chromosome 1.