검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2021.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Aluminum (Al) is one of the most widely applied metals in various industries. Anthropogenic activities of industrial waste result in increased accumulation of Al in natural water resources and aqueous organisms, leading to increased heavy metal pollution in the environment. This will ultimately associate with health risks to all living beings including humans. The present study addresses the possible toxic effects of Al on the motility and regeneration of planarians, using Dugesia japonica as the experimental animal model. Planarians were exposed to varying concentrations of Al (50–1,200 mg/L) for 1 hr, and subsequently evaluated for their motility, seizure-like behaviors, regeneration and alterations of the cell-organelles in their body. Results of the study exhibit that increasing Al concentrations lead to decreased motility and increased seizure-like behaviors, especially the c-type and head bob behaviors in planarians (p<0.05). The regeneration ability in the tail segments was reduced by increased Al concentrations, and the eyespot and optic nerves were more clearly observed in the control groups than planarians exposed to Al. Organelle analysis revealed morphological abnormalities in the mitochondria, golgi apparatus, endoplasmic reticulum, and cilia in the head region of planarians, as compared to the control groups. Taken together, our results indicate that exposure to Al alters the behavior of planarians and delays the regeneration of amputated body parts. Therefore, we suggest that Al exposure adversely can affect the lives of aquatic organisms, and induce toxicity such as cell abnormalities in animals.
        4,000원
        2.
        2021.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Lead (Pb) is a major heavy metal that augments environmental pollution and is a health risk to living organisms. This study was performed to investigate the effect of lead on characteristics of planarian, Dugesia japonica. Briefly, planarians were cultivated in water containing different concentrations (0–400 mg/L) of Pb, and incubated for varying durations (1, 3, and 5 hr). After termination of the incubation time, motility and seizure-like behaviors (c-like, head-bop, snake-like, and screw-like) of the planarians were counted in fresh water. Results showed that increasing Pb concentration and time resulted in decreased motility of the planarians (p<0.05). Increasing concentrations of Pb also resulted in significant increase in the seizure-like behavioral patterns, in particular the c-like and head-bop behaviors. In order to examine eye regeneration, the head region was cut, and rest of the body was incubated in water in the absence or presence of Pb, until emergence of the eye extrusion. Formation of eye spots was initiated in amputated fragments of the control group (without Pb) on day 4 after incubation, whereas appearance of the eye spots was delayed in planarian exposed to 200 mg/L Pb. Moreover, immunohistochemistry revealed that formation of the optic nerve was delayed in planarians exposed to Pb. Thus, our studies determined that planarians exposed to high concentrations of Pb resulted in decreasing motility and induction of seizure-like behaviors, as well as delayed eye regeneration. Results of the current study therefore validate that exposure to lead has a negative effect on the lifespan of aquatic organisms and can cause disturbance of the nervous system in animals, thereby implying the possibility of threatening health.
        4,000원
        3.
        2021.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study was undertaken to evaluate the toxic effect of cadmium sulfate (Cds) on planarians (Dugesia japonica), and the suitability of planarians as an alternative animal model for toxicity studies. Planarians were exposed to varying concentrations of experimental solutions containing 0.1–25 mg/L Cds, and incubated for 1, 3, and 5 hrs. Motility, seizure-like behaviors (c-like, head-bop, snake-like, and screw-like) and regeneration ability of the amputated fragment were subsequently evaluated. Results showed decreased motility with increasing concentrations of Cds (p<0.05), with the lowest motility being observed at the highest concentration of 25 mg/L Cds. Results also indicate that seizure-like behavior patterns were significantly affected by increments in the Cds concentrations, especially the c-like and head-bop behaviors were notably increased. Compared to the control, the regeneration ability of the planarians was decreased in the experimental solutions containing Cds. Planarians exposed to Cds showed either delayed eye formation or no eye regeneration during incubation. Moreover, increased concentrations of Cds resulted in failure to regenerate and death of the planarians. In conclusion, this study confirm that the heavy metal Cds exerts a toxic effect on planarians. Furthermore, the performances of the planarians in the experimental period exhibit their suitability as an alternative animal model for toxicity studies.
        4,000원
        4.
        2020.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Cyanobacteria (blue green algae) blooms formed in natural water resources due to the environmental pollution produce toxic compounds as secondary metabolites, causing health hazards to both humans and other living beings. Microcystin is a well-known toxin produced by cynobacteria. The present study was undertaken to evaluate varying concentrations and exposure times of two different forms of microcystin, viz., -LR (MCLR) and -LA (MCLA), on the motility and seizure-like behavior of planarian (Dugesia japonica). Compared to control, reduced motility was observed in both the MCLR or MCLA treated groups, but did not differ significantly with increasing concentrations of microcystin. However, the number of seizure-like behaviors were increased dose-dependently in planarian exposed to MLCR or MCLA. Exposure time to microcystine also affected the motility and seizure-like behaviors of planarians; 24 hrs incubation with MCLR, and 48 and 96 hrs exposure to MCLA, showed significantly (p<0.05) lower motility, as compared to the control. Assessing regeneration of the planarians revealed the simultaneous completion of eye formation at day 9 in planarians incubated in the absence or presence of MCLR or MCLA, thereby indicating that exposure to microcystin has no effect on the process. In conclusion, we determined that exposure to microcystins resulted in decrease in the number of motility, and induced abnormal behavior pattern in planarians. Further studies are required to identify the toxicity of microcystin that affects aquatic ecosystems.
        4,000원