The short time scale X-ray variability associated with the accretion disk around compact objects is complex and is vaguely understood. The study of the cross correlation function gives an insight into the energy dependent behavior of the variations and hence connected processes. Using high resolution RXTE data, we investigate the dynamical cross correlation function of an observation of a black hole source XTE J1550-564 in the steep power law state. The cross correlation between soft and hard X- ray energy bands revealed both correlated and anti-correlated delays (≤ ±15 s) on a correlation time scale of 50 s. It was noticed that the observed delays were similar to the delays between X-ray and optical/IR bands in other black hole and neutron star sources. We discuss the possible mechanisms/processes to explain the observed delays in the dynamical CCF.
An x-ray astronomy experiment consisting of three collimated proportional counters and an X-ray Sky Monitor (XSM) was flown aboard the Indian Satellite IRS-P3 launched on March 21, 1996 from SHAR range in India. The Satellite is in a circular orbit of 830 km altitude with an orbital inclination of 98° and has three axis stabilized pointing capability. Each pointed-mode Proportional Counter (PPC) is a multilayer, multianode unit filled with P-10 gas (90% Ar + 10% CH4) at 800 torr and having an aluminized mylar window of 25 micron thickness. The three PPCs are identical and have a field of view of 2°×2° defined by silver coated aluminium honeycomb collimators. The total effective area of the three PPCs is about 1200 cm2. The PPCs are sensitive in 2-20 keV band. The XSM consists of a pin-hole of 1 cm2 area placed 16 cm above the anode plane of a 32 cm×32 cm position sensitive proportional counter sensitive in 3-8 keV interval. The position of the x-ray events is determined by charge division technique using nichrome wires as anodes. The principal objective of this experiment is to carry out timing studies of x-ray pulsars, x-ray binaries and other rapidly varying x-ray sources. The XSM will be used to detect transient x-ray sources and monitor intensity of bright x-ray binaries. Observations of black-hole binary Cyg X-1 and few other binary sources were carried out in early May and July-August 1996 period. Details of the x-ray detector characteristics are presented and preliminary results from the observations are discussed.
The x-ray pulsar GX 1+4 was observed by us in four balloon- borne experiments carried out from Hyderabad, India during 1991-1995 period with a hard x-ray telescope. The x-ray telescope consists of two collimated large area xenon-filled proportional counters with an effective area of 2400 cm2, a field of view of 5°×5° and sensitive in the energy band of 20 - 100 keV. The pulsar was detected in bright state in two of the four experiments and x-ray pulsations with 120 second period were detected clearly. Pulsation period, rate of change of period with time, pulse fraction, pulse profile and energy spectra of the source were determined from these studies. During March 1995 observation, the x-ray pulse of GX 1+4 was found to be double-peaked compared to a single-peak pulse profile detected in December 1993. Details of these results are presented and their interpretation discussed in terms of the current accretion models of x-ray binaries.