Bayesian Approach for efficient collapse response assessment of structure is used in this study. The approach facilitates integration preliminary information of risk assessment with numerical analysis results to get more efficient fragility assessment. We can get the preliminary information from different sources, including professional experience, information on the building design criteria, experimental results and simplified linear dynamic analysis. The combination of prior collapse risk information with nonlinear analysis simulations aims to improve computational and statistical efficiency. In this study, we considered a 62m cantilever and independent intake tower to assess its seismic fragility. The approach provides significant improve the statistical and computational efficiency of seismic fragility as well as precise confidence band of fragility curve compared to alternative method.
This study presents the comparison of analytical fragility functions obtained from analyses result of spectrum matched to unmatched ground motions expressed in terms of percentage and ratio. Seven random seed earthquake ground motions were matched to United States Nuclear Regulatory Commission (USNRC) specified design response spectrum to carry out time history analyses of a base-isolated nuclear power plant structure. Fragility functions were estimated using the maximum likelihood method from the obtained responses for the selected ground motions. As anticipated the seismic responses obtained using matched time series were higher than unmatched time series which finally led a higher mean. Standard deviation for both cases were compared and for spectrum matched case smaller result were noticed.