검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 383

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-quality diamond films have attracted extensive attentions due to their excellent optical and electrical properties. However, several issues, such as random orientation, stress accumulation, and slow growth rate, severely limit its applications. In this paper, high-quality polycrystalline diamond films with highly ordered (100) orientation were prepared by microwave plasma chemical vapor deposition. The effects of growth parameters on the microstructure, quality and residual stress of diamond films were investigated. Experimental results indicate that relatively high temperature at low methane concentration will promote the formation of (100) oriented grains with a low compressive stress. Optimized growth parameters, a methane concentration of 2% along with a pressure of 250 Torr and temperature at 1050 ℃, were used to acquire high growth rate of 7.9 μm/h and narrow full width at half maximum of Raman peak of 5.5 cm− 1 revealing a high crystal quality. It demonstrates a promising method for rapid growth of high-quality polycrystalline diamond films with (100) orientation, which is vital for improving the diamond related applications at low cost.
        4,000원
        2.
        2023.12 구독 인증기관 무료, 개인회원 유료
        The rack cylinder is an important part of the pile leg structure of the jack up platform. Because of its complex structure, the flow field around the rack cylinder is different from that around the ordinary cylinder, which brings difficulties to the research of the rack cylinder. In this paper, using CFD(Computational Fluid Dynamics) solved the flow field of chords with different rack height and rack width under different KC and Re, the characteristics of the flow field around the cylinder with rack are obtained. The results show that Re, KC, rack height and rack width all have different effects on the flow field. When Re and KC are constant, Cd will increase with the increase of rack height ratio, the change of Cd and Cl is not significant, while the change of Cd and Cl varies with Re when the chord structure is fixed.
        4,000원
        3.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd’s excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.
        4,200원
        8.
        2023.11 구독 인증기관·개인회원 무료
        Raman characteristics of various minerals constituting natural rocks collected from uranium deposits in Okcheon metamorphic zone in Korea are presented. Micro-Raman spectra were measured using a confocal Raman microscope (Renishaw in Via Basis). The focal length of the spectrometer was 250 mm, and a 1800 lines/mm grating was installed. The outlet of the spectrometer was equipped with a CCD (1,024256 pixel) operating at -70°C. Three objective lenses were installed, and each magnification was 10, 50, and 100 times. The diameter of the laser beam passing through the objective lens and incident on the sample surface was approximately 2 m. The laser beam power at 532 nm was 1.6 mW on the sample surface. Raman signal scattered backward from the sample surface was transmitted to the spectrometer through the same objective lens. To accurately determine the Raman peak position of the sample, a Raman peak at 520.5 cm-1 measured on a silicon wafer was used as a reference position. Since quartz, calcite, and muscovite minerals are widely distributed throughout the rock, it is easy to observe with an optical microscope, so there is no difficulty in measuring the Raman spectrum. However, it is difficult to identify the uraninite scattered in micrometer sizes only with a Raman microscope. In this case, the location of uraninite was first confirmed using SEM-EDS, and then the sample was transferred to the Raman microscope to measure the Raman spectrum. In particular, a qualitative analysis of the oxidation and lattice conditions of natural uraninite was attempted by comparing the Raman properties of a micrometer-sized natural uraninite and a laboratory-synthesized UO2 pellet. Significantly different T2g/2LO Raman intensity ratio was observed in the two samples, which indicates that there are defects in the lattice structure of natural uraninite. In addition, no uranyl mineral phases were observed due to the deterioration of natural uraninite. This result suggests that the uranium deposit is maintained in a reduced state. Rutile is also scattered in micrometer-sizes, similar to uraninite. The Raman spectrum of rutile is similar in shape to that of uraninite, making them confused. The Raman spectral differences between these two minerals were compared in detail.
        9.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene-based sensors have emerged as significant tools for biosensing applications due to their unique electrical, mechanical, and thermal properties. In this study, we have developed an innovative and sensitive aptasensor based on the surfacemodified graphene for the detection of lung cancer biomarker CA125. The sensor leverages the combination of graphene surface and gold nanoparticles (AuNPs) electrodeposition to achieve a high level of sensitivity and selectivity for the biomarker detection. A noticeable decrease in electron transfer resistance was observed upon the AuNPs deposition, demonstrating the enhancement of electrochemical performance. Our experimental findings showed a strong linear relationship between the sensor response and CA125 concentrations, ranging from 0.2 to 15.0 ng/mL, with a detection limit of 0.085 ng/ mL. This study presents a novel approach to lung cancer detection, surpassing the traditional methods in terms of invasiveness, cost, and accuracy. The results from this work could pave the way for the development of graphene-based sensors in various other biosensing applications.
        4,000원
        10.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.
        4,000원
        14.
        2023.07 구독 인증기관 무료, 개인회원 유료
        Non-fungible tokens (NFTs) exploded onto the global digital landscape in 2020, spurred by pandemic-related lockdowns and government stimulus (Ossinger, 2021). An NFT is a unit of data stored on a blockchain that represents or authenticates digital or physical items (Nadini, 2021). Since it resides on a blockchain, NFTs carry the benefits of decentralization, anti-tampering, and traceability (Joy et al., 2022). Fashion brands quickly capitalized on these features, launching fashion NFT collections and garnering significant profits from the sale of fashion NFTs in 2021 (Zhao, 2021). For example, Nike’s December 2021 acquisition of RTFKT (pronounced “artifact”) resulted in USD 185 million in sales less than a year after their acquisition (Marr, 2022).
        4,000원
        15.
        2023.07 구독 인증기관·개인회원 무료
        Destination branding has become an important trend in modern tourism. The development of destination brands has become a strategic tool worldwide because of the growing competition between destinations. In recent years, many tourist destinations have combined unique, creative, and attractive elements to transform themselves into “cool” tourist destinations. Destination brand coolness refers to tourists’ subjective and positive perception of tourist destinations and their beliefs that the destination brand offer distinctive, novel characteristics and attributes that the visitors are attracted to. Creating destination brand coolness can help tourist destinations differentiate themselves from their competitive counterparts, thereby attracting tourists. However, no study has conceptualized the construct of destination brand coolness, let alone developing scales that measure destination brand coolness.
        16.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Developing the high-performance semiconductor photocatalytic materials is an eternal topic under the background of the current energy and environment requirements. In recent years, single-atom photocatalysts (SAPCs) have been brought a lot of attention in energy conversion and environmental purification because of their unique characteristics and properties, including the unique coordination patterns, outstanding atomic utilization, quantum confinement effects, high catalytic activity, etc. Hence, this critical review focuses on the summarized various synthetic methods and the recent important applications of SAPCs, including photocatalytic H2 evolution (PHE) from water splitting, photocatalytic CO2 reduction, photodegradation of organic pollutants, etc. The prospects and challenges for future research topics of SAPCs with excellent activity and stability for various photocatalytic applications are prospected at the end of this review. We sincerely expect that this critical review can promote deep-level insight into the SAPCs subject for the future significant applications in other fields.
        4,900원
        17.
        2023.05 구독 인증기관·개인회원 무료
        The bioreduction process from soluble U(VI) to insoluble U(IV) has been extensively studied in the field of radionuclides migration. Since acetic acid (AcOH) is widely used as an electron donor for bioreduction of U(VI), it is necessary to understand the effect of U(VI)-AcOH complexes that exist in different species depending on pH on this process. Changes in samples before and after bioreduction can be compared using time-resolved laser luminescence spectroscopy (TRLLS), which measures the characteristic luminescence spectra of different U(VI) species. Although luminescence properties of U(VI)-AcOH species were reported, experiments were conducted under conditions below pH 4.5. In this study, spectrophotometry and TRLLS for U(VI)-AcOH species (10−100 μM U(VI) and 20 mM AcOH) were performed in pH ranges extending to neutral and alkaline pH regions similar to groundwater conditions as well as acidic pH region. Two different complexes (UO2(AcO)+, UO2(AcO)2 with U(VI) and acetate ratios of 1:1, 1:2) were observed in the acidic pH region. The 1:1 complex, which appears as the pH increases, has no luminescence properties, but its presence can be confirmed because it serves to reduce the luminescence intensity of UO2 2+. In contrast, the 1:2 complex exhibits distinct luminescence properties that distinguish it from UO2 2+. The 1:3 complex (UO2(AcO)3 -) expected to appear with increasing pH was not observed. Two different complexes ((UO2)3(OH)5 +, (UO2)3(OH)7 - with U(VI) and OH ratios of 3:5, 3:7) were observed as the major species in the neutral pH region, but their luminescence lifetimes are remarkably short compared those in the absence of AcOH. Solid U(VI) particles were observed in the alkaline pH region, and they also had completely different luminescence properties from the aforementioned U(VI)-AcOH and U(VI)-hydrolysis species. Based on these results, the effect of pH in the presence of AcOH on the bioreduction process from U(VI) to U(IV) will be discussed.
        18.
        2023.05 구독 인증기관·개인회원 무료
        To improve the safety of nuclear fuel, research on the advanced nuclear fuel (UO2) by adding various trace elements is being conducted. For example, the addition of metals such as Mo, Cr can improve the thermal conductivity of nuclear fuel, minimizing the diffusion of fission products. Trace metal oxide additives (SiO2, Cr2O3, Al2O3, etc.) can suppress the release of fission gases. In general, complete dissolution of the fuel sample is required for chemical analysis to determine its elemental compositions. Among widely used metal oxide additives, aluminum oxide is difficult to dissolve in nitric acid due to its excellent thermal and chemical stability. In this study, we investigated on different chemical dissolution methods by applying a microwave digestion system under various acid solutions. We confirmed the validity of the digestion method by carrying out trace element analysis using an Inductively-Coupled Plasma Atomic Emission Spectrometer (ICP-AES).
        19.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Individuals with scapular winging have a weak serratus anterior (SA) muscle, and to compensate, the pectoralis major (PM) and upper trapezius (UT) muscles excessively activate, which can cause upper extremity dysfunction. This study aimed to compare the effects of isometric horizontal abduction (IHA) on SA, PM, and UT muscle activity, as well as the SA/PM and SA/UT muscle activity ratios during knee push-up plus (KPP) at 90° and 120° of shoulder flexion. Objects: This study aimed to compare the effects of IHA on SA, PM, and UT muscle activity, as well as the SA/PM and SA/UT muscle activity ratios during KPP at 90° and 120° of shoulder flexion. Methods: This study, conducted at a university research laboratory, included 20 individuals with scapular winging. Participants performed KPP with and without IHA at 90° (KPP90) and 120° (KPP120) of shoulder flexion. SA, PM, and UT muscle activity were measured using surface electromyography. Results: PM activity in KPP90 with IHA was significantly lower than KPP90 and in KPP120 was significantly lower than KPP90. UT activity was significantly greater with IHA than without IHA and at 120° than 90° of shoulder flexion. SA/PM muscle activity ratio was significantly higher in KPP90 with IHA than without IHA and in KPP120 than in KPP90. SA/UT muscle activity ratio was significantly lower with IHA than without IHA. Conclusion: KPP90 with IHA and KPP120 are effective exercises to reduce PM activity and increase SA/PM muscle activity ratio. However, applying IHA in KPP90 also reduces SA/UT muscle activity ratio, implying that it would be preferable to apply KPP120 in individuals overusing their UT muscles.
        4,000원
        1 2 3 4 5