검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Today, the principles of green chemistry are being fundamentally applied in the chemical industry, such as the nitrobenzene industry, which is an essential intermediate for various commercial products. Research on the application of response surface methodology (RSM) to optimize nitrobenzene synthesis was conducted using a sulfated silica (SO4/SiO2) catalyst and batch microwave reactor. The nitrobenzene synthesis process was carried out according to RSM using a central composite design (CCD) design for three independent variables, consisting of sulfuric acid concentration on the silica (%), stirring time (min), and reaction temperature (°C), and the response variable of nitrobenzene yield (%). The results showed that a three-factorial design using the response surface method could determine the optimum conditions for obtaining nitrobenzene products in a batch microwave reactor. The optimum condition for a nitrobenzene yield of 63.38 % can be obtained at a sulfuric acid concentration on the silica of 91.20 %, stirring time of 140.45 min, and reaction temperature of 58.14 °C. From the 20 experiments conducted, the SO4/SiO2 catalyst showed a selectivity of 100 %, which means that this solid acid catalyst can potentially work well in converting benzene to nitrobenzene.
        4,600원
        2.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.
        4,300원
        3.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.
        4,000원