검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the use of face mask materials as a carbon precursor for the synthesis of multi- and single-walled carbon nanotubes (CNTs) in an open-loop chemical recycling process. Novel surgical mask precursors were suspended in toluene and injected into a chemical vapor deposition reactor previously optimized for CNT production using liquid injection. The CNTs were collected and characterized using resonant Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) before being turned into fibrils that were tested for electrical conductance. Once confirmed and repeated for statistical accuracy, a CNT-based Ethernet cable was manufactured and tested using iPerf3 for uplink and downlink speeds exceeding broadband standards worldwide. Radial breathing modes from Raman spectroscopy indicate single walled CNTs (SWCNTs) with diameters ranging from 0.8 to 1.55 nm and this matches well with TEM observations of SWCNTs with 1.5 nm diameter. This work pushes the horizon of feedstocks useful for CNT and SWCNT production in particular; this work demonstrates upcycling of materials fated for disposal into materials with positive net value and plenty of real-world applications.
        4,000원
        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotubes (MWCNTs) grown by chemical vapor deposition retain the residual catalyst particles from which the growth occurred, which are considered a detriment to MWCNTs’ performance, especially electrical conductivity. The first direct measurements have been made of the electrical transport through the catalyst cap into the MWCNT using nanoscale 2-point-probe to determine the effects of the catalyst particle’s size and the diameter ratio with its associated MWCNT on the electrical transport through the catalyst cap as compared to the inherent conductivity of the MWCNT. The MWCNT diameter is independent of the catalyst size, but the ratio of the catalyst cap diameter to MWCNT diameter (DC/DNT) determines the conduction mechanism. Where DC/DNT is greater than 1 the resulting I–V curve is near ohmic, and the conduction through the catalyst ( RC+NT) approaches that of the MWCNT (RNT); however, when the DC/DNT < 1 the I–V curves shift to rectifying and RC+NT > > RNT. The experimental results are discussed in relation to current crowding at the interface between catalyst and nanotube due to an increased electric field.
        4,000원