검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanofillers, by virtue of their minute size, when incorporated inside a matrix, have the capability to enhance the physical parameters of the complex matrix. Graphene, the wonder material of the twenty-first century, has established itself in the field of nanofillers. However, it still has yet to find its way into the mining industry. This review paper focuses on a novel way of attaining sustainability in mining methodology using graphene as a nanofiller. The implementations can be subdivided into three categories based on their impact—economic, environment, and safety. To achieve economic welfare in mine methodology; Graphene is used to enhance the productivity of machinery. Electric-Heavy Earth Moving Machinery using LiFePO4/Graphene hybrid cathode battery is not only an ideal replacement to fossil-powered vehicles considering the contribution of environmental strain but also a more-efficient model than Electric-Heavy Earth Moving Machinery using conventional Lithium Ion Phosphate Battery batteries. Heavy Earth Moving Machinery having tires of Styrene-Butadiene Rubber/Graphene composite would have better efficacy and longer life cycle than the conventional ones. Graphene derivative Magnetic Graphene Oxide is used to achieve environmental welfare by its implication as an additive in the effluent treatment plant for its capability of removing heavy metal ions and negative-strain bacteria from the mine water. To improve the safety standards of the mine workers, graphene and its derivatives have environmental implications to constitute a safer surrounding concerning precarious situations due to the unpredictable behavior of geomaterials. Graphene can assist in constituting a more economical and reliable slope model as incorporating graphene induces restructuration and improvement in strength parameters. This enables a miner to extract more minerals in tranquility from the resources as there is an increase in compaction and shear strength. A combination of a graphene sheet and auxetic graphene foam can be placed over the blast holes to not only restrict the trajectory of the fly rocks but also attenuate some part of the explosive energy. The objective of this coagulation is to upgrade the traditional practice by replacing the conventional products, and the effect is observed in the form of achieving sustainability in the mine.
        5,500원