Efficient donor-acceptor (D-A) molecular scaffolds should be developed for the advancement of organic solar cells (OSCs). Density functional theory (DFT) and time-dependent density functional theory (TDDFT) studies provide an effective methodology to perform initial studies to design and investigate D-A molecular systems. Two fluorine-substituted bis-benzothiadiazoles (FBBTs) are designed and optimized using the DFT method. The results show better planarity for FBBT2, which is attributed to π-extension between the FBBT units. A series of D-A small molecules CB1-4 are designed utilizing FBBT2 to study the effect of systematically substituting carbazole donor and cyano-based acceptor groups on the optoelectronic properties of FBBT. DFT calculations are performed using the B3LYP functional. The designed D-A scaffolds exhibit systematic tuning of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap (from 2.333 eV to 1.825 eV). The observed HOMO-LUMO gap follows the trend CB1 > CB2 > CB4 > CB3. The Voc (open-circuit voltage) and power conversion efficiency (PCE) for CB1-4 are presented with the PC71BM acceptor. The overall trend observed for the Voc follows the order CB1 < CB4 < CB2 < CB3. The PCE trend observed using the Scharber model follows the trend CB3 > CB4 > CB2 > CB1. The results show that end cap modeling of π-extended FBBT with cyano-based acceptor groups significantly improves the observed PCE and Voc.
Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.