검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.07 서비스 종료(열람 제한)
        Plant breeding requires genetic diversity of useful traits for crop improvement. EMS-induced mutation is practiced to generate mutations at loci regulating economically important traits and/or to knock out the genes to elucidate their functions. The present study was aimed to induce mutations in a Korean local land race Capsicum annuum ‘Yuwol-cho’. This accession is pungent and also has advantage to mature early. A total of about 1,500 M2 families were screened and three non-pungent mutants were identified and crossed with wild type ‘Yuwol-cho’. After phenotyping of F2 population for pungency, MutMap approach will be used to identify the genes controlling the pungency in mutants. In addition to this, another C. annuum accession “Micro-Pep” was used to develop a mutant population. Micro-Pep is a small, pungent pepper generally used as ornamental purpose. Having compact growth habit, and small size, it has advantage to handle and utilize easily in mutation study and molecular research. On the basis of preliminary experiment 1.3% of mutagen was used for treatment of pepper seeds and 30% less germination percentage was observed in EMS treated seeds in comparison to control seeds. A total of 4,674 M1 plants are grown under greenhouse condition and M2 population will be studied for characterization of phenotypic variation including fruit color and pungency. Newly constructed mutant populations will be valuable assets for identification of functional genes and molecular breeding of pepper.
        2.
        2015.07 서비스 종료(열람 제한)
        Carotenoids are vital pigments responsible for yellow, orange and red color in plants. In Capsicum, capsanthin-capsorubin synthase (CCS), phytoene synthase (PSY), β-Carotene hydroxylase (CRTZ-2) and lycopene β-cyclase (LCYB) were identified to be involved in the carotenoids synthesis pathway. Previously molecular markers based on the CCS and PSY genes have been developed to distinguish fruit colors in pepper. However these markers can distinguish fruit colors of limited pepper genotypes. Therefore, there is need of developing additional markers for accurate prediction of fruit colors using molecular markers. In this study carotenoids contents of 16 pepper accessions were analyzed and the CCS, PSY, CRTZ-2, LCYB genes were sequenced to identify the genes affecting the fruit color. Among all the analyzed carotenoids, capsanthin was accumulated in much higher amount in red and orange fruits (1100-2500 mAU·min and 30-500 mAU·min respectively) while violaxanthin (20-1200 mAU·min) was accumulated more in yellow fruits. Sequence analysis revealed that deletions and two frame shift mutations in CCS gene for yellow accessions. Frame shift mutations of the PSY gene were detected in two orange accessions. These results show that mutations in CCS and PSY genes affect the fruit colors of pepper, and markers can be developed using mutations of these genes.