검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Four activated carbons were produced by two-stage process as followings; semi-carbonization of indigenous biomass waste, i.e. cotton stalks, followed by chemical activation with KOH under various activation temperatures and chemical ratios of KOH to semi-carbonized cotton stalks (CCS). The surface area, total pore volume and average pore diameter were evaluated by N2-adsorption at 77 K. The surface morphology and oxygen functional groups were determined by SEM and FTIR, respectively. Batch equilibrium and kinetic studies were carried out by using a basic dye, methylene blue as a probe molecule to evaluate the adsorption capacity and mechanism over the produced carbons. The obtained activated carbon (CCS-1K800) exhibited highly microporous structure with high surface area of 950 m2/g, total pore volume of 0.423 cm3/g and average pore diameter of 17.8 a. The isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 222 mg/g for CCS-1K800. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The pseudo-second-order model fitted better for kinetic removal of MB dye. The results indicate that such laboratory carbons could be employed as low cost alternative to commercial carbons in wastewater treatment.
        4,200원
        2.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Common reed (Fragmites australis), a local invasive grass, was investigated as a possible feedstock for the production of activated carbon. Dried crushed stems were subjected to impregnation with phosphoric acid (30, 40 and 50%) followed by pyrolysis at 400~500℃ with final washing and drying. Obtained carbons were characterized by determining: carbon yield, ash content, slurry pH, textural properties and capacity to remove color bodies from factory-grade sugar liquor. Produced carbons possessed surface area up to 700 m2/g, total pore volumes up to 0.37 cm3/g, and proved to be microporous in nature. Decolorization of hot sugar liquor at 80℃ showed degrees of color removal of 60 up to 77% from initial color of 1100~1300 ICU, at a carbon dose of 1.0 g/100 ml liquor. No correlation seems to hold between synthesis conditions and % R but depends on the degree of microporosity. A commercial activated carbon N showed a comparative better color removal capacity of 91%. Common reed proved to be a viable carbon precursor for production of good adsorbing carbon suitable for decolorization in the sugar industry, as well as in other environmental remediation processes.
        4,000원
        3.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Crushed, depitted peach stones were impregnated activated with 50% H3PO4 followed by pyrolysis at 500℃. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional N2 adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.
        4,000원
        4.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of activated carbons (ACs) were derived from sugarcane bagasse under two activation schemes: steam-pyrolysis at 600-800℃ and chemical activation with H3PO4 at 500℃. Some carbons were treated at 400, 600℃, or for 1-3 h, and/or in flowing air during pyrolysis of acid-impregnated mass. XRD profiles displayed two broad diffuse bands centered around 2θ=23 and 43˚, currently associated with diffraction from the 002 and 100/101 set of planes in graphite, respectively. These correspond to the interlayer spacing, Lc, and microcrystallite lateral dimensions, La, of the turbostratic (fully disordered) graphene layers. Steam pyrolysis-activated carbons exhibit only the two mentioned broad bands with enhancement in number of layers, with temperature, and small decrease in microcrystallite diameter, La. XRD patterns of H3PO4-ACs display more developed and separated peaks in the early region with maxima at 2θ=23, 26 and 29˚, possibly ascribed to fragmented microcrystallites (or partially organized structures). Diffraction within the 2θ=43˚ is still broad although depressed and diffuse, suggesting that the intragraphitic layers are less developed. Varying the conditions of chemical activation inflicts insignificant structural alterations. Circulating air during pyrolysis leads to enhancement of the basic graphitic structure with destruction and degradation in the lateral dimensions.
        4,000원
        5.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Crushed peach stone shells were impregnated with H3PO4 of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by N2 adsorption at 77 K using the BET-equation and the α-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % H3PO4. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of H3PO4 concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of H2O molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (≤ 120 min) at two initial dye concentrations.
        4,000원