Unlike somatic cells mitosis, germ cell meiosis consists of two consecutive rounds of divisions that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric divisions. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it was localized to meiotic spindles, and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration; and symmetric division or large polar body emission. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.
In the present study, we examined potential roles of glucose and pyruvate in nuclear and cytoplasmic maturation of porcine oocytes. In the presence and absence of 10% porcine follicular fluid (PFF), either 5.6 mM glucose or 2mM pyruvate effect on meiotic maturation and followed development ability. However, DOs doesn't take full advantage of the glucose in medium, only pyruvate can increase MII rate and follow early embryo development ability significance. COCs were matured with 200 uM pentose phosphate pathway (PPP) inhibitor (dehydroepiandrosterone, DHEA) or 2 μM glycolysis inhibitor (iodoacetate, IA), significantly lower levels of GHS in the DHEA an IA treated oocytes and the levels of ROS were higher significantly in the DHEA treated oocytes, treatment with DHEA significantly reduced the intra-oocyte ATP and NADPH level. Blastocysts from DHEA or IA treated group also presented higher apoptosis levels, meanwhile, the percentage of proliferating cells was dramatically lower than the non-treated group. In conclusion, our results suggest that 10% PFF promoted oocytes make full use of energy, glucose metabolism during in vitro maturation inseparable from the cumulus cells, PPP and glycolysis promoted porcine oocytes cytoplasmic maturation by supplying energy and reducing oxidative stress.