검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        3.
        2022.10 구독 인증기관·개인회원 무료
        Decommissioning waste is generated at all stages during the decommissioning of nuclear facilities, and various types of radioactive waste are generated in large quantities within a short period. Concrete is a major building material for nuclear facilities. It is mixed with aggregate, sand, and cement with water by the relevant mixing ratio and dried for a certain period. Currently, the proposed treatment method for volume reduction of radioactive concrete waste was involved thermomechanical and chemical treatment sequentially. The aggregate as non-radioactive materials is separated from cement components as contaminated sources of radionuclides. However, to commercialize the process established in the laboratory, it is necessary to evaluate the scale-up potential by using the unit equipment. In this study, bench-scale testing was performed to evaluate the scale-up properties of the thermomechanical and chemical treatment process, which consisted of three stages (1: Thermomechanical treatment, 2: Chemical treatment, 3: Wastewater treatment). In the first stage, lab, bench, and pilot scale thermomechanical tests were performed to evaluate the treated coarse aggregate and fines. In the second stage, the fine particles generated by the thermomechanical treatment process, were chemically treated using dissolution equipment, after then the removal efficiency and residual of cement in the small aggregate was compared with laboratory results. The final stage, the secondary wastewater containing contaminant nuclides was treated, and the contaminant nuclides could be removed by chemical precipitation method in the scale-up reactors. Furthermore, an additional study was required on the solid-liquid separation, which connected each part of the equipment. It was conducted to optimize the separation method for the characteristics of the particles to be separated and the purpose of separation. Therefore, it is expected that the basic engineering data for commercialization was collected by this study.
        4.
        2022.05 구독 인증기관·개인회원 무료
        Concrete is one of the largest wastes, by volume, generated during the decommissioning of nuclear facilities, which significantly influences the projected costs for the disposal of decommissioning wastes. Concrete consists of aggregates and a cement binder. In radioactive concrete, the radioisotopes are mainly associated with the cement component. If the radioactive isotope can be separated from the concrete to below the clearance criteria, the volume of radioactive concrete waste could be reduced effectively. We were studied to separate the radioactive materials from the concrete by using the thermomechanical and chemical treatment processes, sequentially. From the study, separated aggregate could be treated to achieve the clearance level. However, these processes generate a large volume of secondary acidic radioactive wastewater, which might be a critical problem to reduce the volume of radioactive concrete waste. In this research, separating the 137Cs and 90Sr from dissolved concrete wastewater to below the discharge criteria by precipitation method, it would be released to the environment under industrial waste guidelines. The experiments were conducted to using a simulated radioactive wastewater, formed by the dissolution of concrete within HCl, which was spiking the 137Cs and 90Sr, respectively. In addition, we applied the chemical precipitation methods with wastewater, using ferrocyanide for 137Cs and BaSO4 coprecipitation for 90Sr. As a result, targeted radionuclides could be removed to the discharge level (137Cs: 0.05 Bq·ml−1, 90Sr: 0.02 Bq·ml−1) by precipitation method. Therefore, it could reduce the secondary wastewater effectively by precipitation method and enhance the additional volume reduction for radioactive concrete waste.
        10.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study applied microbubbles to reduce membrane fouling in wastewater reuse membrane processes, evaluated and compared the transmembrane pressure with or without the application of microbubbles and the cleaning efficiency with the application of aeration and microbubbles. In addition, this study analyzed foulants removed from the membrane surface. Changes in the transmembrane pressure of membranes with the presence or absence of microbubbles were observed. As a result, transmembrane pressure (TMP) increasing rate decreased twofold when applying microbubbles to realize stable operations. This study compared and evaluated cleaning efficiency applying aeration and microbubbles. As a result, the cleaning efficiency was 5% higher on average when applying microbubbles. In turbidity and total organic carbon (TOC), foulants were discharged when applying microbubbles twice as much as applying aeration. It is thought that particulate foulants precipitated on the membrane surface were more likely to desorb because the adhesion between the membrane surface and particle was weakened by microbubbles. Therefore, it is considered possible to effectively control membrane fouling because of the increase in cleaning efficiency when applying microbubbles to wastewater reuse membrane processes.
        4,000원
        11.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microfiltration (MF) and Ultrafiltration (UF) membrane processes capable of producing highly purified water have been extensively applied as a pretreatment process in the wastewater reuse field with the improvement of membrane properties and resistance, development of operating protocols, and improvement of technologies of backwashing and physicochemical cleaning, and improvement of scale and antifoulants. However, despite of the development of membrane production and process technologies, fouling still remains unresolved. This study confirmed that foulants such as polysaccharides, proteins and humic substances existed in final treated effluent (secondary effluent) by fluorescence excitation emission matrix (FEEM) and fourier transform infrared spectroscopy (FTIR) analysis. In addition, when constructing ozone oxidation and coagulation processes as a hybrid process, the removal efficiency was 5.8%, 6.9%, 5.9%, and 28.2% higher than that of the single process using coagulation in turbidity, color, dissolved organic carbon (DOC), and UV254, respectively. The reversible and irreversible resistances in applying the hybrid process consisting of ozone oxidation and coagulation processes were lower than those in applying ozone oxidation and coagulation processes separately in UF membrane process. Therefore, it is considered possible to apply ozonation/coagulation as a pretreatment process for stable wastewater reuse by and then contributing to the reduction of fouling when calculating the optimal conditions for ozone oxidation and coagulation and then to applying them to membrane processes.
        4,000원
        12.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of adsorption and desorption of benzene and toluene were investigated at a fixed bed packed with the activated carbon and activated carbon fiber. Through breakthrough experiments under various feed concentration conditions, it was found that the slope of mass transfer zone and the tailing in the breakthrough curves were different from the feed conditions due to different heats of adsorption. In hot nitrogen desorption, the regeneration time and mass transfer zone of the toluene desorption curve were longer than those of the benzene desorption curve because of the difference in adsorption affinity. With an increase in the regeneration temperature, the height of roll-up and the sharpness of desorption curves increased but the regeneration times decreased. The adsorption capacities of the activated carbon and activated carbon fiber after three-time thermal regenerations decreased about 25% and 37% for benzene and 18% and 25% for toluene, respectively. To investigate the effect of the regeneration temperature on the energetic efficiency, the characteristic desorption temperatures of toluene and benzene were investigated by calculating purge gas consumption and temperature.
        4,200원