검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using durian shell as a carbon source and triethanolamine as a nitrogen dopant, nitrogen-doped carbon dots (N-CDs) were prepared via the hydrothermal method. First, by exploring different reaction times, reaction temperatures, and carbon source/dopant ratios to synthesize nitrogen-doped carbon dots, it is concluded that the best process conditions are 200 ℃, reaction time being 15h, and the dopant addition amount being 2mL. Structure and characteristics of the synthesized CDs were analyzed using X-ray photoelectron spectroscopy, Fourier-transform infrared, fluorescence (FL), ultraviolet–visible absorption, and Raman spectra. The N-CDs showed blue FL with a quantum efficiency of 4.28%. The FL characteristics of the N-CDs were utilized for ion detection, which demonstrated that MnO− 4 and Cr 2 O2− 7 ions caused distinct FL quenching through static quenching, while other ions had no significant quenching effect. The detection limits for MnO− 4 and Cr 2 O2− 7 were 37.5 and 46.2 nM, respectively. The N-CDs were subsequently employed to detect these ions in actual water samples, producing satisfactory results. Therefore, the preparation of N-CDs using durian shell as raw material and its application in practical detection work have good application feedback, which not only provides a new way for the reuse of fruit and vegetable wastes but also provides a new detection means for environmental monitoring pollutants.
        4,500원
        2.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        residue as the raw material. As one of the preconceived raw material to produce high-quality coal-based carbon material, the changes of structure of CLP during liquid-phase carbonization process have been detailed investigated in this study. Actually, FTIR and curve-fitted method were used to quantitative analyze the aromaticity index (Iar), the ratio of CH3/ CH2, and basic functional groups (C=C, C=O, and C–O) of CLP and its liquid-phase carbonization products. Polarizing microscope, XRD and curve-fitted methods were used to characterize the microstructures of CLP and derived products. The results show that, branched chain and C=O group are the active reaction point in liquid-phase carbonization process. What’s more, 450 °C is a critical temperature point on the severe thermal polycondensation of CLP. The XRD and curve-fitted analysis of CLP and its liquid-phase carbonization products shows that, the stacking height (Lc), parallel layers (N), and the numbers of aromatic ring in each layer (n) are gradually larger with the improve of liquid-phase carbonization temperature.
        4,000원