In current microlensing planet searches that are being carried out in a survey/follow-up mode, the most important targets for follow-up observations are lensing events with high magnifications resulting from the very close approach of background source stars to the lens. In this paper, we investigate the dependence of the sensitivity to planets on detailed properties of high-magnification events. From this, it is found that the sensitivity does not monotonically increase as the impact parameter between the lens and the source trajectory decreases. Instead, it is roughly the same for events with impact parameters less than a certain threshold value. It is also found that events involving main-sequence source stars are sensitive to planets in a much wider range of separation and mass ratio, than those events involved with giant source stars. Based on these results, we propose observational strategies for maximal planet detections considering the types of telescopes available for follow-up observations.
As an efficient method to detect blending of general gravitational microlensing events, it is proposed to measure the shift of source star image centroid caused by microlensing. The conventional method to detect blending by this method is measuring the difference between the positions of the source star image point spread function measured on the images taken before and during the event (the PSF centroid shift, δθc,PSF). In this paper, we investigate the difference between the centroid positions measured on the reference and the subtracted images obtained by using the difference image analysis method (DIA centroid shift, δθc.DIA), and evaluate its relative usefulness in detecting blending over the conventional method based on δθc,PSF measurements. From this investigation, we find that the DIA centroid shift of an event is always larger than the PSF centroid shift. We also find that while δθc,PSF becomes smaller as the event amplification decreases, δθc.DIA remains constant regardless of the amplification. In addition, while δθc,DIA linearly increases with the increasing value of the blended light fraction, δθc,PSF peaks at a certain value of the blended light fraction and then eventually decreases as the fraction further increases. Therefore, measurements of δθc,DIA instead of δθc,PSF will be an even more efficient method to detect the blending effect of especially of highly blended events, for which the uncertainties in the determined time scales are high, as well as of low amplification events, for which the current method is highly inefficient.