검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        24.
        2006.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the results of new multi-color CCD photometry for the contact binary XZ Leo, together with reasonable explanations for the period and light variations. Six new times of minimum light have been determined. A period study with all available timings confirms Qian's (2001) finding that the O-C residuals have varied secularly according to dP/dt = +8.20×10-8 d yr-l. This trend could be interpreted as a conservative mass transfer from the less massive cool secondary to the more massive hot primary in the system with a mass flow rate of about 5.37×10-8 M⊙ yr-l. By simultaneous analysis of our light curves and the previously published radial-velocity data, a consistent set of light and velocity parameters for XZ Leo is obtained. The small differences between the observed and theoretical light curves are modelled by a blue third light and by a hot spot near the neck of the primary component. Our period study does not support the tertiary light but the hot region which may be formed by gas streams from the cool secondary. The solution indicates that XZ Leo is a deep contact binary with the values of q=0.343, i=78°.8, Δ (T1-T2)=126 K, and f=33.6 %, differing much from those of Niarchos et al. (1994). Absolute parameters of XZ Leo are determined as follows: M1=1.84 M⊙, M2=0.63 M⊙, R1=1.75 R⊙, R2=1.10 R⊙, L1=7.19 L⊙, and L2=2.66 L⊙.
        4,000원
        32.
        2019.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We present new BVRI light curves of UY UMa with no O’Connell effect and a flat bottom secondary eclipse. Light curve synthesis with the Wilson-Devinney code gives a new solution, which is quite different from the previous study: UY UMa is an A-subtype over-contact binary with a small mass ratio of q = 0.21, a high inclination of 81˚.4, a small temperature difference of ΔT = 18˚, a large fill-out factor of f = 0.61, and a third light of approximately 10% of the total systemic light. The absolute dimensions were newly determined. Seventeen new times of minimum light have been calculated from our observations. The period study indicates that the orbital period has intricately varied in a secular period increase in which two cyclical terms with periods of 12y.0 and 46y.3 are superposed. The secular period increase was interpreted to be due to a conservative mass transfer of 2.68 × 10–8 M⊙/yr from the less massive to the more massive star. The cyclical components are discussed in terms of double-light time contributions from two additional bound stars. The statistical relations of Yang & Qian (2015) among the physical parameters of 45 deep, low mass ratio contact binaries were revisited by using the physical parameters of UY UMa and 25 Kepler contact binaries provided by Şenavci et al. (2016).
        33.
        2019.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        UV Psc is a typical RS CVn type system undergoing dynamic chromosphere activity. We performed photometric observations of the system in 2015 and secured new BVR light curves showing well-defined photometric waves. In this paper, we analyzed the light curves using Wilson-Devinney binary code and investigated the orbital period of the system. The combination of our light curve synthesis with the spectroscopic solution developed by previous investigators yielded the absolute parameters as: M1 = 1.104 ± 0.042 Mⵙ, R1 = 1.165 ± 0.025 Rⵙ, and L1 = 1.361 ± 0.041 Lⵙ for the primary star, and M2 = 0.809 ± 0.082 Mⵙ, R2 = 0.858 ± 0.018 Rⵙ, and L2 = 0.339 ± 0.010 Lⵙ for the secondary star. The eclipse timing diagram for accurate CCD and photoelectric timings showed that the orbital period may vary either in a downward parabolic manner or a quasi-sinusoidal pattern. If the latter is adopted as a probable pattern for the period change, a more plausible account for the cyclic variation may be the light time effect caused by a circumbinary object rather than an Applegate-mechanism occurring via variable surface magnetic field strengths.
        34.
        2016.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        New multiband BVRI light curves of NSVS 1461538 were obtained as a byproduct during the photometric observations of our program star PV Cas for three years from 2011 to 2013. The light curves indicate characteristics of a typical W-subtype W UMa eclipsing system, displaying a flat bottom at primary eclipse and the O’Connell effect, rather than those of an Algol/ b Lyrae eclipsing variable classified by the northern sky variability survey (NSVS). A total of 35 times of minimum lights were determined from our observations (20 timings) and the SuperWASP measurements (15 ones). A period study with all the timings shows that the orbital period may vary in a sinusoidal manner with a period of about 5.6 yr and a small semiamplitude of about 0.008 day. The cyclical period variation can be interpreted as a light-time effect due to a tertiary body with a minimum mass of 0.71 M⊙. Simultaneous analysis of the multiband light curves using the 2003 version of the Wilson- Devinney binary model shows that NSVS 1461538 is a genuine W-subtype W UMa contact binary with the hotter primary component being less massive and the system shows a low mass ratio of q(mc/mh)=3.51, a high orbital inclination of 88.7°, a moderate fill-out factor of 30 %, and a temperature difference of ΔT=412 K. The O’Connell effect can be similarly explained by cool spots on either the hotter primary star or the cool secondary star. A small third-light corresponding to about 5 % and 2 % of the total systemic light in the B and V bandpasses, respectively, supports the third-body hypothesis proposed by the period study. Preliminary absolute dimensions of the system were derived and used to look into its evolutionary status with other W UMa binaries in the mass-radius and mass-luminosity diagrams. A possible evolution scenario of the system was also discussed in the context of the mass vs mass ratio diagram.
        35.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.
        36.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        New observations for the times of minimum lights of a well-known apsidal motion star CW Cephei were made using a 0.6 m wide field telescope at Jincheon station of Chungbuk National University Observatory, Korea during the 2015 observational season. We determined new times of minimum lights from these observations and analyzed O-C diagrams together with collected times of minima to study both the apsidal motion and the Light Time Effect (LTE) suggested in the system. The new periods of the apsidal motion and the LTE were calculated as 46.6 and 39.3 years, respectively, which were similar but improved accuracy than earlier ones investigated by Han et al. (2002), Erdem et al. (2004) and Wolf et al. (2006).
        37.
        2015.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6 m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique, allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of sub-millimagnitude order over several hours for a V ~10 host star, typical for transiting planets detected from ground-based survey facilities. We compared our results with transit observations from a telescope operated in in-focus mode. High photometric precision was obtained due to the collection of a larger amount of photons, resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by exposing the same pixels on the CCD. Furthermore, a longer exposure time helps reduce the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves in which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes was achieved.
        1 2 3