검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2011.06 구독 인증기관 무료, 개인회원 유료
        Measurement of estrogen concentration in bio-samples are very important for differential diagnosis of various disease or evaluation of health status. However, it is difficult to collect immediate data of estrogen concentration because they are measured by radioimmunoassay or chromatography which need time- and cost-consuming sample pre-treatment. This study was performed for development of new estrogen biosensor employing taste principles, and for evaluation of cross reactivity between various steroid hormones. Gene sequence of ligand binding domain of α-human estrogen receptor (amino acid 302-553; hER-LBD) was cloned from human breast cancer cell line. The proteins of hER-LBD were produced by T7-E.coli expression system, and isolated by chromatography. hER-LBD were coated on the gold plated quartz crystal (AT-cut 9MHz), and resonance frequencies were measured by universal frequency counter. Estradiol, progesterone, testosterone, and aldosterone were used for cross reactivity of the hER-LBD. We also monitored influences of pH change in resonance frequency. The resonance frequencies of hER-LBD coated quartz crystal were decreased during increase of estrogen concentration from 15 μg/mL to 50 μg/mL. However, similar steroid hormones, progesterone and aldosterone, did not elicit the change in resonance frequency. Testosterone evoke weak change in resonance frequency. The new estrogen biosensor was more sensitive in pH 7.2 than in pH 7.6. These results suggest that hER-LBD coated quartz crystal biosensor is a probable estrogen biosensor.
        4,000원
        2.
        2008.09 구독 인증기관 무료, 개인회원 유료
        Glutamate-induced cobalt uptake reveals non-NMDA glutamate receptors (GluRs) in rat taste bud cells. Previous studies suggest that glutamate-induced cobalt uptake in taste cells occurs mainly via kainate type GluRs. Cobaltstained cells were immunoreactive against GluR6 and KA1 subunits of GluRs. However, the functions of those type of receptors are not known yet. It is important question which types of taste cells are cobalt-stained when stimulated by glutamate and whether they express these kinds of GluRs. Circumvallate and foliate papilla of Sprague-Dawley rats (45-60 days old) were used. A cobalt-staining technique combined with immunohistochemistry against specific markers for taste bud cell types, such as blood group H antigen (BGH), α-gustducin (Gus), or neural cell adhesion molecule (NCAM) was employed. We also performed double labeling of GluR6 or KA1 subunits of GluR with each specific marker for taste bud cell types. Lots of cobaltstained taste bud cells expressed Gus-like immunoreactivity, and subsets of the cobalt stained cells appeared NCAM- or BGH-like immunoreactivity. Stimulation with 1 mM glutamate significantly increased the number of cobaltstained cells in Gus-like immunoreactive cells, but not in NCAM- or BGH-like immunoreactive cells. In the double labeling experiments, GluR6 and KA1 subunits of GluRs were mainly expressed with Gus. These results suggest that kainate glutamate receptors preferentially expressed in type II taste bud cells in rat.
        4,000원
        3.
        2008.03 구독 인증기관 무료, 개인회원 유료
        Taste is a critically important sense for the survival of an organism. However, structure and distribution of taste receptors were only recently investigated. Although expression of the ion channels responsible for the sense of salty taste and acidity was observed in the non-taste cells, receptors for sweet and bitter taste were only identified in taste cells. Salivary glands are involved in the sensing of taste and plays important roles in the transduction of taste. The purpose of this study is to examine whether taste receptors are present in the salivary glands and to provide clues for the investigation of the taste-salivary glands interaction. Using microarray and RT-PCR analyses, the presence of taste receptor mRNAs in the rat von Ebner gland and submandibular gland was confirmed. Type I taste receptors were preferentially expressed in von Ebner gland, whereas type II taste receptors were expressed in both von Ebner gland and submandibular gland. The tastespecific signal tranducing proteins, Gαgustducin and phospholipase C β2, were also detected in both salivary glands by immunohistochemistry. Finally, the activation of the calcium signal in response to bitter taste in the acinar cells was also observed. Taken together, these results suggest that taste receptors are present in the von Ebner gland and submandibular gland and that type II taste receptors are functionally active in both salivary glands.
        4,200원